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Abstract

In statistics and machine learning, logistic regression is a
widely-used supervised learning technique primarily em-
ployed for binary classification tasks. When the number of
observations greatly exceeds the number of predictor vari-
ables, we present a simple, randomized sampling-based al-
gorithm for logistic regression problem that guarantees high-
quality approximations to both the estimated probabilities
and the overall discrepancy of the model. Our analysis builds
upon two simple structural conditions that boil down to
randomized matrix multiplication, a fundamental and well-
understood primitive of randomized numerical linear alge-
bra. We analyze the properties of estimated probabilities of
logistic regression when leverage scores are used to sample
observations, and prove that accurate approximations can be
achieved with a sample whose size is much smaller than the
total number of observations. To further validate our theo-
retical findings, we conduct comprehensive empirical evalu-
ations. Overall, our work sheds light on the potential of us-
ing randomized sampling approaches to efficiently approx-
imate the estimated probabilities in logistic regression, of-
fering a practical and computationally efficient solution for
large-scale datasets.

1 Introduction
In statistics and machine learning, logistic regression (Hos-
mer Jr, Lemeshow, and Sturdivant 2013) is a widely-used
supervised learning technique applied to binary classifica-
tion tasks. It is a statistical method that predicts one of two
possible outcomes based on the input features. More specif-
ically, the goal is to model the probability of one of the bi-
nary outcomes based on the predictor variables. In machine
learning and various scientific applications, logistic regres-
sion appears in numerous settings, including online learning
(Zhang et al. 2012), feature selection (Koh, Kim, and Boyd
2007), anomaly detection (Hendrycks, Mazeika, and Diet-
terich 2019; Feng et al. 2014), disease classification (Liao
and Chin 2007; Chai et al. 2018), image & signal process-
ing (Dong, Zhu, and Gong 2019; Rosario 2004), probability
calibration (Kull et al. 2019) and many more.

Formally, given the data matrix X ∈ Rn×d and the binary
response vector y ∈ {0, 1}n, logistic regression models the
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following

P (yi = 1 | Xi∗) := pi(β) =
exp (Xi∗β)

1 + exp (Xi∗β)
, (1)

for i = 1, 2, . . . , n. Here, yi ∈ {0, 1} is the i-th component
of y, Xi∗ is i-th row (as a row vector) of X, and β ∈ Rd is
the vector of unknown regression coefficients, which is often
estimated by the maximum likelihood estimator (MLE) i.e.,
through maximizing the log-likelihood function with respect
to β, which is given by

ℓ(β) =
n∑

i=1

(
yi log pi(β) + (1− yi) log(1− pi(β))

)
=

n∑
i=1

(
yiXi∗β − log(1 + exp(Xi∗β))

)
, (2)

where we get eqn. (2) by using eqn. (1) in the previous
step. The MLE of the coefficients vector β can be written as
β∗ = argmaxβ ℓ(β) . Equivalently, eqn. (2) can be written
in the following compact form:

ℓ(β) = yTXβ − 1Tg(β) (3)

where g(β) is an n × 1 vector with the i-th entry gi(β) =
log(1+exp(Xi∗β)), for i = 1, . . . , n. The MLE β∗ satisfies
the following condition

∂ℓ (β)

∂β

∣∣∣∣
β=β∗

= 0 ⇒ XT (y − p(β∗)) = 0 . (4)

Here p(β∗) is an n-dimensional vector of estimated prob-
abilities 1 , with the i-th entry corresponds to pi(β

∗), for
i = 1, . . . n. Unfortunately, due to the non-linearity of ℓ(β),
there is no closed-form analytical solution to eqn. (4). As
a result, a variant of Newton’s method, namely, iteratively
reweighted least squares (IRLS) (Green 1984) is commonly
used to find β∗ from eqn. (4), that maximizes ℓ(β). The
IRLS algorithm iteratively computes the MLE of the param-
eter vector, by solving a weighted least squares problem at
every iteration. Therefore, the per iteration cost of the algo-
rithm is dominated by the cost of solving the aforementioned
weighted least squares problem at each iteration.

1The term “predicted probabilities” is used in some literature,
but throughout our paper, we consistently refer to it as the vector
of “estimated probabilities.”
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In our work, we will focus on the data matrix X ∈ Rn×d

with n ≫ d i.e., the number of observations greatly ex-
ceeds the number of predictor variables. For simplicity of
exposition, we will also assume X is of full rank i.e.,
rank(X) = d. Now, in such n ≫ d setting, solving the
weighted least-squares problem at each iteration of the IRLS
algorithm is expensive, taking O(nd2) time, which essen-
tially is the cost of computing the inverse of the Hessian
matrix

[
∂2ℓ(β)

∂β∂βT

]−1

= −(XTWX)−1 at each iteration, where
W ∈ Rn×n is a diagonal weight matrix with the diagonal
entries pi(β)(1 − pi(β)), for i = 1, . . . , n. Moreover, in
many practical scenarios, obtaining labels for all n obser-
vations of the response variable can be challenging, often
involving expensive and lengthy experiments. Therefore, if
we can only afford to obtain the responses for a small subset
of the data points, a couple of natural question arises: First,
if we estimate the parameter vector β using only this limited
subset of data, is it possible to use that estimate to accu-
rately approximate the probabilities of a given class for all
the n instances? Second, what is the minimum sample size
required to yield meaningful results?

1.1 Our Contribution
We introduce a randomized sampling-based algorithm for
logistic regression with a novel analysis of it, which ensures
accurate solutions in terms of the estimated probabilities.
Our analysis relies on simple structural conditions that can
be reduced to randomized matrix multiplication, a funda-
mental and well-understood primitive of randomized numer-
ical linear algebra. Our main algorithm (see Algorithm 2)
is analyzed in light of the following two structural condi-
tions, which constructs a sampling-based sketching matrix
S ∈ Rs×n (for an appropriate choice of the sketching di-
mension s≪ n), such that for any given vector x ∈ Rn and
accuracy parameter 0 < ε < 1,∣∣∥UTSTSx∥2 − ∥UTx∥2

∣∣ ≤ ε

2
∥x∥2, (5)

∥UTSTS(y − p(β∗))∥2 ≤
ε

2
∥y − p(β∗)∥2 (6)

Here, U ∈ Rn×d contains the left singular vectors of X.
Indeed, one can use the (exact or approximate) row lever-
age scores (Mahoney 2011; Mahoney and Drineas 2009) of
the matrix X ( cf . Section 1.3) to satisfy the aforemen-
tioned constraints by sampling O(d/ε2) observations from
X, in which case S is a sampling-and-rescaling matrix. Un-
der these structural conditions, the output of Algorithm 2
satisfies

∥p(β̂)− p(β∗)∥2 ≤ ε ∥y − p(β∗)∥2. (7)

In words, our algorithm achieves an approximation bound
on the estimated probabilities compared to the estimated
probabilities obtained from β∗, which is the MLE based
on the full data. Specifically, eqn. (7) can be satisfied by
sampling-and-rescaling O

(
d
ε2

)
rows of X. The bound in

eqn. (7) depends on ∥y − p(β∗)∥2 i.e., the goodness-of-
fit of the full data model. It measures the overall discrep-
ancy between the actual class labels and the probabilities

assigned by the logistic regression model. A smaller value
of ∥y − p(β∗)∥2 indicates a better fit of the model to the
true data labels. Therefore, our bound suggests that our sub-
sampled MLE β̂ provides better approximations of the esti-
mated probabilities when the full data model is well-suited
to the data. This bound in eqn. (7) is highly desirable as it de-
pends on the ability of the full data model to accurately dis-
tinguish between different classes. See Section 2 for an im-
portant remark on the tightness of our bound. Additionally,
Our main result straightforwardly translates into the follow-
ing relative-error bound in terms of the the overall discrep-
ancy measure:∣∣∣∥y − p(β̂)∥2 − ∥y − p(β∗)∥2

∣∣∣ ≤ ε∥y − p(β∗)∥2. (8)

Finally, we summarize our key contributions below:
• The bound in terms of the estimated probabilities consti-

tutes one of our primary contributions (Theorem 1). In
addition, it is important not only because it provides a
precise approximation of the estimated probabilities, but
also because it translates into a relative-error bound in
terms of the overall discrepancy (Corollary 2).

• Our second contribution is the obtained sampling com-
plexity due to Algorithm 2. The sampling complexities
of the relevant methods, namely, (Munteanu et al. 2018)
and (Mai, Musco, and Rao 2021) are Õ(d3·µy(X)2/ϵ4)

and Õ(d·µy(X)2/ϵ2) respectively, which depend on the so-
called complexity measure µy(X), quantifying the dif-
ficulty of compressing a dataset for logistic regression.
The value of µy(X) can be substantially large depending
on the data. In contrast, our novel analysis eliminates the
µy(X)2 factor and our sampling complexity is O(d/ε2),
independent of µy(X).

• Finally, note that (Munteanu et al. 2018) proposed the so-
called L2S method, which is a sampling scheme from a
mixture distribution with one component proportional to
the square root of the leverage scores, a method that sig-
nificantly differs from conventional leverage score sam-
pling approaches. Similarly, (Mai, Musco, and Rao 2021)
utilized a more carefully constructed probability distribu-
tion, namely, ℓ1-Lewis weights. Interpreting the impact of
a data point based on the above sampling schemes might
necessitate additional context and explanation, making
them relatively less intuitive for practitioners. In contrast,
standard leverage scores are widely used as a sampling
tool due to their ease of interpretability. They provide di-
rect, visual, and statistical insights into the importance
of individual data points in the model. In this context,
our third contribution is that we are the first to employ
standard leverage scores sampling in logistic regression
and provide strong accuracy guarantees with improved
sampling complexity. In addition, the use of leverage
score sampling makes our analyses simpler and cleaner
as compared to the prior works.

Additionally, we evaluate our algorithm on a variety of real
datasets in order to practically assess its performance. In
terms of accuracy, Algorithm 2 performs comparably to
both (Munteanu et al. 2018; Mai, Musco, and Rao 2021)
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and the full-data model. Regarding runtime, we can easily
align our method with (Munteanu et al. 2018) by utilizing
the fast computation of leverage scores from (Clarkson and
Woodruff 2017). See Section 5 for details.

1.2 Prior Work
Over the past few decades, randomized numerical linear al-
gebra has strongly advocated for the adoption of sketching
and sampling techniques to compress data matrices, pro-
viding provable guarantees in various optimization prob-
lems, including linear regression (Drineas, Mahoney, and
Muthukrishnan 2006), ridge regression (Alaoui and Ma-
honey 2015; Chowdhury, Yang, and Drineas 2018) , low-
rank approximation (Sarlos 2006), k-means clustering (Co-
hen et al. 2015), principal components analysis (Boutsidis,
Mahoney, and Drineas 2008), Fisher’s discriminant analysis
(Chowdhury, Yang, and Drineas 2019), linear programming
(Song and Yu 2021; Chowdhury et al. 2020, 2022; Dexter
et al. 2022) and many others. Very recently, there has been a
growing interest in applying such sketching techniques to lo-
gistic regression problems. In this section, we highlight our
contributions in the context of this rapidly growing field of
sketching-based algorithms for logistic regression.

Recent works have explored subsampling for logistic re-
gression from statistical viewpoints, employing schemes
such as a two-step subsampling approach (Wang, Zhu,
and Ma 2018), Poisson subsampling (Wang 2019), and an
information-based sampling strategy (Cheng, Wang, and
Yang 2020). Similarly, in addressing extreme class imbal-
ance, (Wang 2020; Wang, Zhang, and Wang 2021) examined
the randomized undersampling strategy, enhancing model
performance by selecting a smaller subset from the majority
class. Notably, these efforts focus on optimal strategies in
asymptotic scenarios (i.e., n→∞) under standard assump-
tions. In contrast, our work assesses performance in finite
data regimes. Importantly, these strategies lack finite sample
guarantees and, in most cases, necessitate solving the full-
data logistic regression problem for implementation.

The work more closely related to ours in terms of the ac-
curacy bound is (Song and Dai 2022). If n is extremely large,
(Song and Dai 2022) proposed a hybrid sampling scheme
based on both randomized and deterministic strategies, and
provided non-asymptotic accuracy bounds in terms of the
estimated probabilities of the logistic regression. While the
deterministic scheme is based on leverage score sampling
and primarily follows the two-step algorithm of (Wang, Zhu,
and Ma 2018), the randomized strategy relies on the sam-
pling probabilities that implicitly depend on β∗, the full data
MLE of the model, which is not very effective in practice.
Furthermore, the theoretical bounds provided by (Song and
Dai 2022) contain the condition number of the data matrix
X in the numerator. Therefore, when X is ill-conditioned,
the condition number can become exceedingly large, result-
ing in bounds that are relatively imprecise. Finally, the min-
imum sample size of their sampling methods is determined
by β∗, which again poses practical challenges.

In another closely related line of research, as already men-
tioned in Section 1.1, (Munteanu et al. 2018; Mai, Musco,
and Rao 2021) studied the so-called coresets for logistic re-

gression and came up with provable bounds using a smaller
(and weighted) subset of the original data points of X sam-
pled according to carefully constructed probability distribu-
tions, such as the so-called ℓ1-Lewis weights (Cohen and
Peng 2015). In particular, (Mai, Musco, and Rao 2021) es-
tablished the current state-of-the-art ε-relative error bounds
with Õ

(
d · µy(X)2/ε2

)
points, where µy(X) is a complex-

ity measure of the data matrix X and response vector y ∈
{−1, 1}n. Similarly, in more recent works, (Munteanu, Om-
lor, and Woodruff 2021, 2023) introduced data-oblivious,
random projection-based sketching methods designed for lo-
gistic regression, that came with probabilistic guarantees on
the sketched estimate. In n≪ d regime, (Dexter et al. 2023)
recently presented new bounds for coresets construction and
dimensionality reduction for logistic regression problem by
sketching the feature space. However. it is important to note
that in all the aforementioned efforts related to the coresets
of logistic regression, the theoretical bounds are defined in
terms of the logistic loss function and not directly in rela-
tion to the estimated probabilities based on the MLEs of the
logistic regression model. In addition, the underlying sam-
pling complexities rely on the previously mentioned com-
plexity measure µy(X), a quantity that is contingent on the
distribution of the data.

Finally, we refer the reader to the surveys (Woodruff
2014; Mahoney 2011; Drineas and Mahoney 2016, 2018;
Martinsson and Tropp 2020) for more background on Ran-
domized Numerical Linear Algebra and and its applications.

1.3 Notations
We use x,y, . . . to denote vectors and X,Y, . . . to denote
matrices. For a matrix X,X∗i (Xi∗) denotes the i-th column
(row) of X as a column (row) vector and Xij is the (i, j)-
th entry of X. For a vector x, xi is its i-th entry and ∥x∥2
denotes its Euclidean norm; for a matrix X, ∥X∥2 denotes
its spectral norm and ∥X∥F denotes its Frobenius norm. We
refer the reader to (Golub and Van Loan 2012) for properties
of norms that will be quite useful in our work. For a matrix
X ∈ Rn×d with n > d and rank(X) = d, its (thin) Singular
Value Decomposition (SVD) is the product UΣVT, with
U ∈ Rn×d (the matrix of the left singular vectors), V ∈
Rd×d (the matrix of the right singular vectors), and Σ ∈
Rd×d a diagonal matrix whose diagonal entries are the non-
zero singular values of X arranged in non-increasing order.
Computation of the SVD takes, in this setting,O(nd2) time.
Finally, the row leverage scores of X are given by ∥Ui∗∥22
for i = 1, 2, . . . , n. Additional notation will be introduced
as needed.

2 Our Approach

2.1 Constructing the Sketching Matrix S

We construct the sampling-based sketching matrix S us-
ing Algorithm 1, which has previously appeared in several
prior literature including randomized matrix multiplication
(Drineas, Kannan, and Mahoney 2006), linear regression
(Drineas, Mahoney, and Muthukrishnan 2006), and many
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Algorithm 1: Construct S
Input: Sampling probabilities πi, i = 1, . . . , n, number of
sampled indices s≪ n;
Output: Sampling-and-rescaling matrix S ∈ Rs×n;
Initialize: S← 0s×n;

1: for i = 1 to s do
2: Pick ji ∈ {1, . . . , n} with P (ji = k) = πk;
3: Siji ← (s πji)

− 1
2 ;

4: end for
5: return S

Algorithm 2: Sketched logistic regression
Input: data matrix X ∈ Rn×d, response vector y ∈ {0, 1}n,
sampling-and-rescaling matrix S ∈ Rs×n;

Output: β̂ ∈ Rd, p(β̂) ∈ (0, 1)n;

1: Compute β̂ = argmax
β

(
yTSTSXβ − 1TSTSg(β)

)
;

where g(β) is defined in eqn. (3).

2: Compute p(β̂), with pi(β̂) =
exp(Xi∗β̂)

1+exp(Xi∗β̂)

3: return β̂, p(β̂);

other. In this work, we utilize it in the context of logistic re-
gression, which is why we provide a very brief explanation
suitable for general reader.

In Algorithm 1, we construct the sampling-and-rescaling
matrix S by independently selecting s elements (s ≪ n),
with replacement, from a set of indices {1, 2, . . . , n}, based
on a pre-specified probability distribution {π1, π2, . . . πn},
where 0 < πi < 1 for i = 1, 2, . . . , n, and

∑n
i=1 πi = 1. If

the k-th independent random trial results in the index ℓ, we
assign Skℓ = 1/√s πℓ; otherwise, Skℓ = 0, for k = 1, . . . , s
and ℓ = 1, . . . , n.

Now, we outline three key observations about S con-
structed this way using Algorithm 1. First, note that S is
very sparse, having only one non-zero entry per row, result-
ing in a total of s non-zero entries. Second, computing SX is
equivalent to selecting s rescaled rows of X, independently
and with replacement, according to the same probability dis-
tribution {π1, π2, . . . πn}. Third, STS ∈ Rn×n is a diago-
nal matrix and the ℓ-th diagonal entry of STS is given by
(STS)ℓℓ =

L
sπℓ

, where L = 0, . . . , s denotes the number of
times index ℓ is picked up in the sample of size s. Now, we
proceed to our main sampling-based algorithm for logistic
regression.

2.2 Main Algorithm
Given the sketching matrix S constructed using Algo-

rithm 1, our main algorithm (Algorithm 2) is conceptually
simple. We first modify the full data log-likelihood function
in eqn. (3) by sampling and rescaling s data points, and the
resulting subsampled log-likelihood can be written as

ℓ̄(β) = yTSTSXβ − 1TSTSg(β) . (9)

Algorithm 2 then maximizes ℓ̄(β) and computes the
corresponding vector of estimated probabilities with re-
spect to the maximizer β̂. Since, STS is a diago-
nal matrix (see Section 2.1), we can rewrite ℓ̄(β) as
ℓ̄(β) =

∑n
i=1

(
yi(S

TS)iiXi∗β − (STS)ii gi(β)
)
. Recall

that gi(β) = log(1 + exp(1 + Xi∗β)) is the i-th en-
try of g(β). Therefore, from the optimality condition
∂ℓ̄(β)
∂β |β=β̂ = 0, we have

XTSTS
(
y − p(β̂)

)
= 0 . (10)

Theorem 1 presents our approximation guarantee under
the assumption that the sketching matrix S satisfies the con-
straints of eqns. (5) and (6).

Theorem 1. Let X ∈ Rn×d and y ∈ {0, 1}n be the inputs
of the logistic regression problem. Assume that for some con-
stant 0 < ε < 1, the sketching matrix S ∈ Rs×n satisfies
the structural conditions of eqns. (5) and (6). Then, the esti-
mator β̂ returned by Algorithm 2 satisfies

∥p(β̂)− p(β∗)∥2 ≤ ε ∥y − p(β∗)∥2.

Recall that p(β∗) is the vector of estimated probabilities
from the full data MLE of the logistic regression coefficients.

Further insights are required to better understand the
above bound.

Remark 1. As mentioned in Section 1.1, the tightness of
our bound depends on the performance of the full data model
based on β∗. A smaller value of the residual ∥y − p(β∗)∥2
indicates a better fit of the full data model to the true labels
and our bound becomes tighter. In fact, when there is no
misclassification in the model with respect to the full data
MLE β∗, our bound is even tighter than the relative-error
bound. To illustrate this, if the logistic regression model with
coefficient vector β∗ finds a decision boundary that perfectly
separates the two classes, then for all observations with yi =
1, we have (yi − pi(β

∗)) ≤ pi(β
∗), and for all yi = 0,

we trivially have (yi − pi(β
∗)) = −pi(β∗). This implies

∥y− p(β∗)∥22 ≤ ∥p(β
∗)∥22. Therefore, our bound becomes

tighter than ∥p(β̂)− p(β∗)∥2 ≤ ε∥p(β∗)∥2.
As mentioned in Section 1.1, Theorem 1 further translates

into the following relative-error bound in terms of the dis-
crepancy measure.

Corollary 2. Let X,y, S and ε are as defined in Theorem 1.
Then, the estimator β̂ returned by Algorithm 2 satisfies∣∣∣∥y − p(β̂)∥2 − ∥y − p(β∗)∥2

∣∣∣ ≤ ε∥y − p(β∗)∥2.

Proof. We use the lower bound of the triangle inequality:
∥p(β̂)− p(β∗)∥2 ≥

∣∣∣∥y − p(β̂)∥2 − ∥y − p(β∗)∥2
∣∣∣.

Applying this to Theorem 1 yields the desired result.

Clearly, our bound serves two purposes simultaneously:
it ensures that both our estimated probabilities (Theorem 1)
and the degree of misclassification (Corollary 2) are compa-
rable to those of the full data model.
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3 Proof of Theorem 1
In this section, we will prove Theorem 1. In the proofs, we
will use the abbreviations p∗ for p(β∗) and p̂ for p(β̂) to
simplify the notation and make it more concise. We remind
the reader that U ∈ Rn×d,V ∈ Rd×d and Σ ∈ Rd×d are,
respectively, the matrices of the left singular vectors, right
singular vectors and singular values of X in a thin SVD rep-
resentation. Our first result provides an important identity
that will be crucial in proving the final bound.
Lemma 3. Prove that

UTSTS
(
y − p(β∗)

)
= UTSTS

(
p(β̂)− p(β∗)

)
Proof. We start with the following

XTSTS
(
y − p∗) = XTSTS

(
y − p∗ − p̂+ p̂

)
= XTSTS

(
y − p̂

)
+XTSTS

(
p̂− p∗)

= XTSTS
(
p̂− p∗) , (11)

where the last equality directly follows from the fact that
XTSTS

(
y − p̂

)
= 0 (from eqn. (10)). Using the thin SVD

of X, we rewrite eqn. (11) as

VΣUTSTS
(
y − p∗) = VΣUTSTS

(
p̂− p∗) (12)

The proof follows from pre-multiplying both side of
eqn. (12) by Σ−1VT, and the fact that VTV = Id.

Our next result provides a critical lower bound that is in-
strumental in bounding ∥p(β̂)− p(β∗)∥2.
Lemma 4. If the condition in eqn. (5) is satisfied, then

∥UTSTS
(
p(β̂)− p(β∗)

)
∥2 ≥ (1− ε/2)∥p(β̂)− p(β∗)∥2.

Proof. Assuming p̂ ̸= p∗ (otherwise, we have nothing to
prove), we rewrite the left hand side as

∥UTSTS
(
p̂− p∗)∥2 =

∥UTSTS
(
p̂− p∗)∥2

∥p̂− p∗∥2
· ∥p̂− p∗∥2

(13)
We work on the first term on the right hand side of eqn. (13),

∥UTSTS(p̂− p∗)∥2
∥p̂− p∗∥2

≥ min
z̸=0

∥UTSTSz∥2
∥z∥2

=
∥UTSTSz∗∥2
∥z∗∥2

,

(14)
where z∗ = argminz̸=0

∥UTSTSz∥2

∥z∥2
. From eqn. (5), we have

∥UTSTSz∗∥2 ≥ ∥UTz∗∥2 − ε/2∥z∗∥2

⇒∥U
TSTSz∗∥2
∥z∗∥2

≥ ∥U
Tz∗∥2
∥z∗∥2

− ε

2
≥ min

z̸=0

∥UTz∥2
∥z∥2

− ε

2
(15)

Combining eqns. (13),(14) and (15), we further have

∥UTSTS
(
p̂− p∗)∥2 ≥(

min
z̸=0

∥UTz∥2
∥z∥2

− ε

2

)
∥p̂− p∗∥2

=
(
σmin(U

T)− ε/2
)
∥p̂− p∗∥2

=(1− ε/2)∥p̂− p∗∥2 ,
where the first equality follows from the definition of min-

imum singular value of a matrix and σmin(U
T) denotes the

minimum singular value of UT, which is equal to one as U
has orthonormal columns. The proof is now complete.

Proof of Theorem 1. Combining Lemma 3, Lemma 4,
and eqn. (6), we directly have

∥p̂− p∗∥2

≤ ∥U
TSTS(p̂− p∗)∥2

1− ε/2
=
∥UTSTS

(
y − p∗)∥2

1− ε/2

≤
ε
2 ∥y − p∗∥2

1− ε/2
≤ ε ∥y − p∗∥2 ,

where the last inequality is due to the fact that 1−ε/2 > 1/2
as 0 < ε < 1. This concludes the proof. □

4 Satisfying the Structural Conditions
In this section, we demonstrate how to satisfy the constraints
in eqns.(5) and (6) using the sampling-based sketching ma-
trix S constructed via Algorithm 1. As space is limited, some
of our proofs are deferred to the Appendix. Nevertheless,
to offer insights into the mathematical derivations support-
ing our contributions, we outline the proofs as follows. Also,
similar to Section 3, we frequently write p∗ to denote p(β∗).
First, we state a fundamental result from the randomized ma-
trix multiplication literature.

Lemma 5. Let U ∈ Rn×d be the matrix of the left singular
vectors of X, and x ∈ Rn be any vector. Furthermore, let
S ∈ Rs×n is constructed using Algorithm 1. Then,

E
(∥∥UTS⊤Sx−UTx

∥∥2
2

)
≤

n∑
i=1

∥Ui∗∥22 · x2
i

sπi

Lemma 5, with a more general formulation, was origi-
nally introduced in (Drineas, Kannan, and Mahoney 2006)
where U can be any matrix, the vector x can be replaced
with another matrix, and the left-hand side represents the
expectation of squared Frobenius norm. However, for our
specific purpose, we narrow it down to U being the matrix
of the left singular vectors of X, and x being a vector. For
completeness, we prove it in the Appendix2.

Next result is a special case of Lemma 5 where the πi’s
i.e., the sampling probabilities are proportional to the row
leverage scores of X.

Lemma 6. Let matrix U and vector x are as defined
in Lemma 5. If the sketching matrix S ∈ Rs×n is con-
structed using Algorithm 1, with sampling probabilities
πi = ∥Ui∗∥2

2/∥U∥2
F, for i = 1, . . . , n. Then,

E
(∥∥UTS⊤Sx−UTx

∥∥2
2

)
≤ d

s
∥x∥22

Proof of Lemma 6 is immediate from Lemma 5 with πi =
∥Ui∗∥2

2

∥U∥2
F

, and the fact that ∥U∥2F = d (because UTU = Id).

4.1 Sample Complexity
For the condition in eqn. (6), we apply the Markov’s inequal-
ity with Lemma 6 and use the fact that UT(y−p(β∗)) = 0
(this can be directly derived by applying thin SVD of X

2https://arxiv.org/abs/2402.16326
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(a) cardio (b) churn (c) default
Figure 1: Experiment results on real data: The top row of plots illustrates the relative errors in estimated probabilities and the
bottom row shows misclassification rates. Errors are in log-scale.

on eqn. (4) and pre-multiplying the resulting equation by
Σ−1VT),

P
(∥∥UTSTS(y − p∗)

∥∥
2
≥ ε

2
∥y − p∗∥2

)
=P

(∥∥UTSTS(y − p∗)−UT(y − p∗)
∥∥
2
≥ ε

2
∥y − p∗∥2

)
≤
4E

(∥∥UTSTS(y − p∗)−UT(y − p∗)
∥∥2
2

)
ε2 ∥y − p∗∥22

≤
4 d ∥y − p∗∥22
sε2 ∥y − p∗∥22

=
4 d

sε2
. (16)

For the condition in eqn (5), we have from the lower
bound of triangle inequality,∣∣∥∥UTSTSx

∥∥
2
−
∥∥UTx

∥∥
2

∣∣ ≤ ∥∥UTSTSx−UTx
∥∥

i.e.,
(∣∣∥UTSTSx∥2 − ∥UTx∥2∥

∣∣ ≥ ε

2
∥x∥2

)
implies(

∥UTSTSx−UTx∥2 ≥
ε

2
∥x∥2

)
,

i.e., P
(∣∣∥UTSTSx∥2 − ∥UTx∥2∥

∣∣ ≥ ε

2
∥x∥2

)
≤ P

(
∥UTSTSx−UTx∥2 ≥

ε

2
∥x∥2

)
(17)

Similar to eqn. (16), applying Markov’s inequality on the
right hand side of eqn. (17) and using Lemma 6, we have

P
(∣∣∥UTSTSx∥2 − ∥UTx∥2∥

∣∣ ≥ ε

2
∥x∥2

)
≤ 4 d

sε2
. (18)

Now, for a failure probability 0 < δ < 1, if we set the
sample size s ≥ 8d

δε2 , eqns. (16) and(18) boil down to

P
(∥∥UTSTS(y − p∗)

∥∥
2
≥ ε

2
∥y − p∗∥2

)
≤ δ

2
(19)

P
(∣∣∥UTSTSx∥2 − ∥UTx∥2∥

∣∣ ≥ ε

2
∥x∥2

)
≤ δ

2
(20)

Finally, applying the union bound to eqns. (19) and (20),
we conclude that if the number of sampled rows s satisfies

s ≥ 8d

δε2
,

then both structural conditions of Theorem 1, namely
eqns. (5) and (6) hold with probability at least 1− δ.

Remark 2. Here, it’s worth highlighting that only a single
structural condition, namely ∥UTSTSx−UTx∥2 ≤ ε ∥x∥2,
suffices to establish our bound. Indeed, employing the lower
bound of the triangle inequality to the aforementioned con-
straint leads to the condition presented in eqn. (5). Similarly,
the condition described in eqn. (6) can be readily deduced
by simply taking x = y − p∗ and utilizing the fact that
UT(y − p∗) = 0 in this context. This way, we can fur-
ther reduce the constant in the lower bound on sample size
s mentioned above. However, for the sake of clarity for gen-
eral readers, we break this down into two separate condi-
tions: one for the upper bound and one for the lower bound
on ∥UTSTS

(
p̂− p∗)∥2.

Running Time. As discussed in Section 1, cost of comput-
ing the full data MLE β∗ is dominated by the cost of com-
puting the inverse of the Hessian matrix, −(X⊤WX)−1, at
each iteration of the IRLS algorithm, which takes O(nd2)
time. In contrast, our proposed Algorithm 2 offers a more
efficient approach. In our setting, the inverse of the Hes-
sian matrix of the subsampled log-likelihood function ℓ̄(β)

is given by,
[

∂2 ℓ̄(β)

∂β∂β⊤

]−1

= −(X⊤W1/2S⊤SW1/2X)−1. Re-
call that W ∈ Rn×n is a diagonal matrix. Therefore, with
our chosen sample size s = O(d/ϵ2), this can be computed in
O(nnz(X)+ d3

/ϵ2) time, where nnz(X) represents the num-
ber of non-zero elements in matrix X. Additionally, it’s also
worth mentioning that approximate leverage scores are suf-
ficient for our purpose. Their computation can be efficiently
done without the need to compute U, achieving a time com-
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plexity of O
(
nnz(X) log n+ d3 log2 d+ d2 log n

)
due to

(Clarkson and Woodruff 2017).

5 Empirical Evaluation
Datasets. First, we provide a brief introduction to the
datasets used in our empirical evaluations. We have applied
our algorithm to three distinct real-world datasets. The first
dataset, sourced from Kaggle, is the Cardiovascular disease
dataset (Halder 2020), featuring 70, 000×12 patient records
with a 50% positive case occurrence. This dataset aims to
predict the presence of cardiovascular disease. The second
dataset, also from Kaggle, is the Bank customer churn pre-
diction dataset, containing 10, 000× 10 records with a 20%
positive case prevalence, focusing on the classification of
customer departure likelihood. The third and final dataset,
named the Default of credit card clients dataset, is sourced
from the UCI ML Repository (Yeh 2016). It consists of
30, 000×24 records with a 22% positive case ratio and aims
to predict the probability of credit card default in the future.

Comparisons and metrics. In our experiments, we com-
pare three different sampling schemes: selecting rows (i)
uniformly at random, (ii) proportional to their row lever-
age scores (this work), and (iii) using the L2S method of
(Munteanu et al. 2018). For each sampling method, we run
Algorithm 2 with varying sample sizes and measure two
key metrics which are the most relevant to our analysis,
namely, (i) the relative error of the estimated probabilities
i.e.∥p̂−p∗∥2/∥p∗∥2 and (ii) the misclassification rates. Each
experiment is run 20 times and we report the means of the
aforementioned metrics. Notably, we exclude the method
from (Mai, Musco, and Rao 2021) for comparison, as they
already extensively compared their work with (Munteanu
et al. 2018). The performance of (Mai, Musco, and Rao
2021) closely aligns with (Munteanu et al. 2018), with very
marginal variations observed for logistic regression. There-
fore, we include only (Munteanu et al. 2018) as we do
not anticipate any significant differences in performance be-
tween ours and (Mai, Musco, and Rao 2021).

Results. The first set of results are presented in Figure 1.
In the top row, we present relative errors in terms of esti-
mated probabilities. For the first dataset (cardiovascular dis-
ease), our sampling approach based on row leverage scores
(red) consistently outperforms both L2S (green) and uniform
sampling (blue) and our method gets better as the sample
size s increases. For the remaining two datasets (last two
columns of Figure 1), both the L2S and uniform sampling
methods demonstrate marginally better performance in gen-
eral, except for the fact that our method gets better than
L2S for larger s in the third column. However, it is note-
worthy that the errors in all three methods are consistently
very close to each other and become smaller as s increases.
Therefore, the crucial point to note is that our leverage score-
based approach indeed works well in practice and demon-
strates very comparable results to the other two methods,
thereby validating our theoretical bound. In the bottom row
of Figure 1, we present a comparison of the misclassification
rates. For the first and third datasets with moderate sample
sizes, our leverage score-based approach achieves misclas-
sification rates that are either lower than or very close to the

misclassification rate of the full-data model (gray). In con-
trast, L2S performs slightly better, while uniform sampling
performs slightly worse than ours. As for the second dataset
(middle column), all three approaches perform comparably,
with their respective misclassification rates decreasing and
converging to that of the full-data model as s increases.
Overall, we would like to emphasize that our plots are on
log scale and if we look at actual numbers on the y-axis, the
difference with (Munteanu et al. 2018) is indeed very small.

For completeness, we also compare our method with re-
spect to the relative-error nagative log-likelihoods and due to
space constraints, the plots are given in the Appendix3. For
the same reason, we also postpone some additional experi-
ments in Appendix (e.g., the plots for the standard deviations
from the 20 runs for each of the experiments conducted.

Finally, we want to highlight that our experiments are pre-
liminary proof-of-concept showing that our leverage score-
based sampling scheme for logistic regression works well
in practice and performs very comparably to the prior
work. While we use the numpy.linalg.svd routine
to compute our leverage score-based sampling probabili-
ties, (Munteanu et al. 2018) employed a fast, randomized
sketching-based implementation to compute the leverage
scores which were subsequently used to calculate the L2S
sampling probabilities. This method can also be seamlessly
applied in our context for the leverage score computation.
Therefore, given the architecture and specific optimization
method, running time of our algorithm will be highly com-
parable to that of (Munteanu et al. 2018).

6 Conclusion and Future Work
We have presented a simple structural result to analyze a
randomized sampling-based algorithm for the logistic re-
gression problem, guaranteeing highly accurate solutions in
terms of both the estimated probabilities and overall discrep-
ancy. There are several immediate future directions that can
be explored further. In terms of future research, it is im-
portant to explore whether similar bounds can be derived
using random projection-based oblivious sketching matri-
ces. This includes exploring techniques like sparse sub-
space embeddings as presented in (Cohen 2016), very sparse
subspace embeddings of (Clarkson and Woodruff 2017),
Gaussian sketching matrices, or even combinations of both
approaches as outlined in (Cohen, Nelson, and Woodruff
2016). The key challenge is when S is a general sketch-
ing matrix, STS is not necessarily a diagonal matrix. There-
fore it is not clear how to formulate an identity similar to
eqn. (10) with general sketching matrices. Secondly, it’s
worth noting that we have employed the IRLS method in
our algorithm as a black-box. Therefore, an obvious fu-
ture direction would be to further investigate how the errors
stemming from the IRLS solver propagate and affect our
bound. Lastly, logistic regression finds numerous applica-
tions in high-dimensional data scenarios including genomics
and bioinformatics, medical diagnostics, image analysis and
many more. Hence, exploring similar bounds in high dimen-
sions, i.e., when n≪ d, would be intriguing.

3https://github.com/AgnivaC/SubsampledLogisticRegression
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