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Abstract

Fisher discriminant analysis (FDA) is a widely
used method for classification and dimension-
ality reduction. When the number of predictor
variables greatly exceeds the number of obser-
vations, one of the alternatives for conventional
FDA is regularized Fisher discriminant analysis
(RFDA). In this paper, we present a simple, iter-
ative, sketching-based algorithm for RFDA that
comes with provable accuracy guarantees when
compared to the conventional approach. Our
analysis builds upon two simple structural re-
sults that boil down to randomized matrix mul-
tiplication, a fundamental and well-understood
primitive of randomized linear algebra. We
analyze the behavior of RFDA when leverage
scores and ridge leverage scores are used to se-
lect predictor variables, and prove that accurate
approximations can be achieved by a sample
whose size depends on the effective degrees of
freedom of the RFDA problem. Our results
yield significant improvements over existing ap-
proaches and our empirical evaluations support
our theoretical analyses.

1 INTRODUCTION

In multivariate statistics and machine learning, Fisher’s
linear discriminant analysis (FDA) is a widely used
method for classification and dimensionality reduction.
The main idea is to project the data onto a lower dimen-
sional space such that the separability of points between
the different classes is maximized while the separability
of points within each class is minimized.

Let A ∈ Rn×d be the centered data matrix whose rows
represent n points in Rd. We assume that A is centered
around m ∈ Rd, with m being the grand-mean of the

original raw (non-centered) data-points.1 Suppose there
are c disjoint classes with nj observations belonging to
the j-th class and

∑c
j=1 nj = n. Further, let mj ∈ Rd

denote the mean vector of the raw (non-centered) data-
points corresponding to the j-th class, j = 1, 2, . . . , c.
Define the total scatter matrix

Σt ,
n∑
i=1

(ai −m)(ai −m)T ∈ Rd×d,

where ai is the i-th raw data-point. Similarly, define the
between-class scatter matrix

Σb ,
c∑
j=1

nj(mj −m)(mj −m)T ∈ Rd×d.

Under these notations, conventional FDA solves the gen-
eralized eigen-problem

Σb xi = λi Σt xi, i = 1, 2, . . . q,

where xi is called the i-th discriminant direction, with
q ≤ min{d, c − 1} and λ1 ≥ λ2 ≥ · · · ≥ λq > 0 . We
can further express this problem in matrix form as

ΣbX = ΣtXΛ, (1)

where X ,
[
x1 x2 · · · xq

]
∈ Rd×q and Λ ,

diag{λ1, . . . , λq} . An elegant linear algebraic formu-
lation of eqn. (1) was presented in [36]:

(ATΩΩTA)X = (ATA)XΛ, (2)

where Σt = ATA and Σb = ATΩΩTA. Here, Ω ∈
Rn×c denotes the rescaled class membership matrix, with
Ωij = 1/

√
nj if the i-th row of A (i.e., the i-th data

point) is a member of the j-th class; otherwise Ωij = 0.

1If the original data were represented by the matrix Â ∈
Rn×d, then m is the row-wise mean of Â and A = Â−1nm

T,
where 1n is the all-ones vector. As a result of mean-centering,
rank(A) ≤ min{n− 1, d− 1}.



If ATA is non-singular, then (λi,xi), i = 1, 2, . . . , q
are the eigen-pairs of the matrix (ATA)−1ATΩΩTA.
However, in many applications such as micro-array anal-
ysis [19], information retrieval [10], and face recogni-
tion [16, 37], the underlying ATA is ill-conditioned as
the number of predictors greatly exceeds the number of
observations, i.e., d � n. This makes the computation
of (ATA)−1ATΩΩTA numerically unstable. A popular
alternative to FDA that addresses this problem is regular-
ized Fisher discriminant analysis (RFDA) [17, 19].2

In RFDA, (ATA)−1 is replaced by (ATA + λId)
−1,

where λ > 0 is a regularization parameter. In this case,
eqn. (2) becomes

G ΩTAX = XΛ, (3)

where

G = (ATA + λId)
−1ATΩ = AT(AAT + λIn)

−1Ω.

(The last equality can be verified using the SVD of A.)
Note that ATA + λId is always invertible for λ > 0. We
define the effective degrees of freedom of RFDA as

dλ =

ρ∑
i=1

σ2
i

σ2
i + λ

≤ ρ . (4)

Here, ρ is the rank of the matrix A and we note that dλ de-
pends on both the value of the regularization parameter λ
and the non-zero singular values σ2

i , i = 1, 2, . . . , ρ.

Solving the RFDA problem of eqn. (3). Notice that the
solution (X,Λ) to eqn. (3) may not be unique. Indeed,
if X is a solution to eqn. (3), then for any non-singular
diagonal matrix D ∈ Rq×q, XD is also a solution. [36]
proposed an eigenvalue decomposition (EVD)-based al-
gorithm (see Algorithm 2 in Appendix B) which not only
returns X as a solution to eqn. (3) but also guarantees
that for any two data points w1,w2 ∈ Rd, X satisfies
‖(w1−w2)

TX‖2 = ‖(w1−w2)
TG‖2 (see Theorem 8).

This implies that instead of using the actual solution X,
if we project the points using G, the distances between
the projected points would also be preserved. Thus, for
any distance-based classification method (e.g., k-nearest-
neighbors), both X and G would result in the same pre-
dictions. Therefore, when solving eqn. (3) it is reasonable
to shift our interest from X to G. However, due to the
high dimensionality d of the input data, exact computation
of G is expensive, taking time O(n2d+ n3 + ndc).

1.1 OUR CONTRIBUTIONS

We present a novel iterative, sketching-based algorithm
for the RFDA problem that guarantees highly accurate so-
lutions when compared to conventional approaches. Our

2We note that another variant is pseudo-inverse FDA [29],
which replaces (ATA)−1 by (ATA)†.

analysis builds upon simple structural conditions that boil
down to randomized matrix multiplication, a fundamental
and well-understood primitive of randomized linear alge-
bra. Our main algorithm (see Algorithm 1) is analyzed
in light of the following structural constraint, which con-
structs a sketching matrix S ∈ Rd×s (for an appropriate
choice of the sketching dimension s� d), such that

‖ΣλV
TSSTVΣλ −Σ2

λ‖2 ≤
ε

2
. (5)

Here, V ∈ Rd×ρ contains the right singular vectors of A
and Σλ ∈ Rρ×ρ is a diagonal matrix with

(Σλ)ii =
σi√
σ2
i + λ

, i = 1, . . . , ρ . (6)

Notice that ‖Σλ‖2F = dλ, which is defined to be the ef-
fective degrees of freedom of the RFDA problem (see
eqn. (4)). Eqn. (5) can be satisfied by sampling with re-
spect to the ridge leverage scores of [2, 8] (cf. Section 1.3)
or by oblivious sketching matrix constructions (e.g.,
count-sketch [7] or sub-sampled randomized Hadamard
transform (SRHT) [1, 14, 30]) for S with sketch-size s de-
pending on dλ (see Appendix F for details). Recall that dλ
is upper bounded by ρ but could be significantly smaller
depending on the distribution of the singular values and
the choice of λ. Indeed, it follows that by sampling-
and-rescaling O(dλ ln dλ) predictor variables from the
matrix A (using either exact or approximate ridge lever-
age scores [2, 8]), we can satisfy the constraint of eqn. (5),
and Algorithm 1 would yield an estimator Ĝ satisfying

‖(w−m)T(Ĝ−G)‖2 ≤
εt√
λ
‖VVT(w−m)‖2 . (7)

Here, w ∈ Rd is any test data point and VVT(w −m)
is the part of w − m that lies within the range of AT

(see footnote 1 for the definition of m). We note that the
dependency of the error on ε drops exponentially fast as
the number of iterations t increases. See Section 2.2 for
constructions of S and Section 1.2 for a comparison of
this bound with prior work.

Additionally, we complement the bound of eqn. (7) with
a second bound subject to a different structural condition:

‖VTSSTV − Iρ‖2 ≤
ε

2
. (8)

Indeed, assuming that the rank of A is much smaller
than min{n, d}, one can use the (exact or approximate)
column leverage scores [22, 21] of the matrix A (cf. Sec-
tion 1.3) to satisfy the aforementioned constraint by sam-
pling O(ρ ln ρ) columns, in which case S is a sampling-
and-rescaling matrix. Perhaps more interestingly, a va-
riety of oblivious sketching matrix constructions for S
can also be used to satisfy eqn. (8) (see Section 2.2 for



specific constructions of S). In either case, under this
structural condition, the output of Algorithm 1 satisfies

‖(w−m)T(Ĝ−G)‖2 ≤
εt

2
√
λ
‖VVT(w−m)‖2. (9)

The above guarantee is essentially identical to that of
eqn. (7), with the approximation error decaying exponen-
tially fast as the number of iterations t increases. How-
ever, eqn. (8) exhibits a worse dependency on the sketch
size s. Indeed, eqn. (8) can be satisfied by sampling-and-
rescalingO(ρ ln ρ) predictor variables from the matrix A,
which could be much larger than the sketch size needed
when sampling with respect to the ridge leverage scores.

To the best of our knowledge, our bounds are the first at-
tempt to provide general structural results that guarantee
provable, high-quality solutions for the RFDA problem.
To summarize, our first structural result (Theorem 1) can
be satisfied by sampling with respect to ridge leverage
scores or by the use of oblivious sketching matrices whose
size depends on the effective degrees of freedom, yielding
a highly accurate guarantee in terms of “distance distor-
tion” caused by iterative sketching. While ridge leverage
scores have been used in a number of applications includ-
ing matrix approximation, cost-preserving projections,
and k-means clustering [8], their performance in the con-
text of RFDA has not been analyzed in prior work. Our
second structural result (Theorem 2) complements the
analysis of Theorem 1 subject to a second structural con-
dition (eqn. (8)) which can be satisfied by sampling with
respect to standard leverage scores using a sketch size
that depends on the rank of the centered data matrix.

1.2 PRIOR WORK

The work most closely related to ours is [32], where
the authors proposed a fast random projection–based
algorithm to accelerate RFDA. Their theoretical analy-
sis showed that random projections (and in particular
the count-min sketch) preserve the generalization abil-
ity of FDA on the original training data. However,
for the d � n case, the error bound in their work
(Theorem 3 of [32]) depends on the condition number
of the centered data matrix A. More precisely, they
proved that their method computes a matrix Ĝ in time
O(nnz(A)) +O(n2s+ n3 + ndc),3 which, for any test
data point w ∈ Rd, satisfies

‖(w −m)T(Ĝ−G)‖2 ≤
κ ε

1− ε
‖VVT(w −m)‖2 ,

with high probability for any ε ∈ (0, 1] (here, κ is the
condition number of A). Thus, their random projection–
based approach well-approximates the original RFDA

3Here, s = O(ρ2/δε2), where δ is the failure probability.

problem only when A is well-conditioned (i.e., κ small).
In addition, the running time of their approach grows
proportionally to O(1/ε2), whereas our algorithm runs
in O(log(1/ε)) time (cf. Section 2.2). Lastly, our main
result depends only on the effective degrees of freedom dλ
(cf. Theorem 1), which can be much smaller than ρ.

Our work was inspired by [36], where the authors pre-
sented a flexible and efficient implementation of RFDA
through an EVD-based algorithm. In addition, [36] un-
covered a general relationship between RFDA and ridge
regression that explains how matrix G has similar proper-
ties with the solution matrix X in terms of distance-based
classification methods. We also note that using their lin-
ear algebraic formulation and the proposed EVD-based
framework, [32] presented a fast implementation of FDA.
Another line of work that motivated our approach was
the framework of leverage score sampling and the rela-
tively recent introduction of ridge leverage scores [2, 8].
Indeed, our Theorems 1 and 2 present structural results
that can be satisfied (with high probability) by sampling
columns of A with probabilities proportional to (exact or
approximate) ridge leverage scores and leverage scores,
respectively (see Section 2.2). To the best of our knowl-
edge, these are the first results providing a strong accuracy
guarantee for RFDA problems when ridge leverage scores
are used to sample predictor variables.

Under a different context, a recent paper [6] presented an
iterative algorithm for solving ridge regression problems
with d� n in a sketching-based framework. There, the
authors proved that the output of their proposed algorithm
closely approximates the true solution of the ridge regres-
sion problem if the columns of the data matrix are sam-
pled with probabilities proportional to the column ridge
leverage scores. While the results in [6] require assump-
tions on λ and the singular values of A, a key advantage
of the present work is that our main result (Theorem 1) is
valid for any λ > 0. From the sketching perspective, we
also emphasize that the distinction between regularized
regression problems and RFDA is substantial.

Among other relevant works, [27] proposed an iterative
algorithm for ridge regression that unifies (and acceler-
ates) the so-called iterative Hessian sketch (IHS) [23] and
iterative dual random projection (IDRP) [35] together to
reduce the number of observations and dimensionality si-
multaneously. However, it is not straightforward to extend
the idea of [27] in an FDA-based classification framework.
In another paper [25], the authors addressed the scalabil-
ity of FDA by developing a random projection–based
FDA algorithm and presented a theoretical analysis of
the approximation error involved. However, their frame-
work applies exclusively to the two-stage FDA problem
[4, 34], where the issue of singularity is addressed before



the actual FDA stage. Another line of research [24, 31]
dealt with the fast implementation of null-space based
FDA [5] for d� n using random matrices. Nevertheless,
their approach is quite different from ours and does not
come with provable guarantees. In addition, [15] pro-
vided a tight bound on classification error when FDA is
applied in a random projection–based reduced feature-
space. However, their approach utilizes the within-class
scatter matrix Σt−Σb, which becomes costly to compute
and potentially ill-conditioned when d is large, resulting
in unreliable predictions. Finally, [33] proposed an itera-
tive approach to address the singularity of ATA, where
the underlying data representation model is different from
conventional FDA. Their approach does not yield a closed
form solution for the discriminant directions.

1.3 NOTATION

We use a,b, . . . to denote vectors and A,B, . . . to denote
matrices. For a matrix A, A∗i (Ai∗) denotes the i-th
column (row) of A as a column (row) vector. For a vector
a, ‖a‖2 denotes its Euclidean norm; for a matrix A, ‖A‖2
denotes its spectral norm and ‖A‖F denotes its Frobenius
norm. We refer the reader to [18] for properties of norms
that will be quite useful in our work.

For a matrix A ∈ Rn×d with d ≥ n of rank ρ, its
(thin) Singular Value Decomposition (SVD) is the product
UΣVT, with U ∈ Rn×ρ (the matrix of the left singular
vectors), V ∈ Rd×ρ (the matrix of the right singular vec-
tors), and Σ ∈ Rρ×ρ a diagonal matrix whose diagonal
entries are the non-zero singular values of A arranged in
non-increasing order. Computation of the SVD takes, in
this setting, O(n2d) time. We will often use σi to denote
the singular values of a matrix implied by context.

We shall also make use of the full SVD representation
A = UfΣfV

T
f , where Uf = (U U⊥) ∈ Rn×n, Vf =

(V V⊥) ∈ Rd×d, and Σf =

(
Σρ×ρ 0

0 0

)
∈ Rn×d.

Here, U⊥ ∈ Rn×(n−ρ) and V⊥ ∈ Rd×(d−ρ). Finally, the
column leverage scores and ridge leverage scores of A
are respectively given by ‖Vi∗‖22 and ‖(VΣλ)i∗‖22 for
i = 1, 2, . . . , d. (Recall the definition of Σλ in eqn. (6).)
Additional notation will be introduced as needed.

2 ITERATIVE, SKETCHED FISHER
DISCRIMINANT ANALYSIS

2.1 AN ITERATIVE, SKETCHING-BASED
ALGORITHM

Our main algorithm (Algorithm 1) solves a sketched
RFDA problem in each iteration while updating the

(rescaled) class membership matrix to account for the
information already captured in prior iterations. More
precisely, our algorithm iteratively computes a sequence
of matrices G̃(j) ∈ Rd×c for j = 1, . . . , t and returns
the estimator Ĝ =

∑t
j=1 G̃(j) to the original matrix G

of eqn. (3). Our main quality-of-approximation results
(Theorems 1 and 2) argue that returning the sum of those
intermediate matrices results in a highly accurate approxi-
mation to the direct RFDA solution.

Algorithm 1 Iterative RFDA Sketch
Input: A ∈ Rn×d, Ω ∈ Rn×c, λ > 0; number of
iterations t > 0; sketching matrix S ∈ Rd×s;
Initialize: L(0) ← Ω, G̃(0) ← 0d×c, Y(0) ← 0n×c;
for j = 1 to t do

L(j) ← L(j−1) − λY(j−1) −AG̃(j−1);
Y(j) ← (ASSTAT + λIn)

−1L(j);
G̃(j) ← ATY(j);

end for
Output: Ĝ =

∑t
j=1 G̃(j);

Theorem 1 presents our approximation guarantees under
the assumption that the sketching matrix S satisfies the
constraint of eqn. (5).

Theorem 1. Let A ∈ Rn×d and G ∈ Rd×c be as defined
in Section 1. Assume that for some constant 0 < ε < 1
the sketching matrix S ∈ Rd×s satisfies eqn. (5). Then,
for any test data point w ∈ Rd, the estimator Ĝ returned
by Algorithm 1 satisfies

‖(w −m)T(Ĝ−G)‖2 ≤
εt√
λ
‖VVT(w −m)‖2 .

Recall that VVT(w −m) is the projection of the vector
w −m onto the row space of A.

Similarly, Theorem 2 presents our accuracy guarantees
under the assumption that the sketching matrix S satisfies
the constraint of eqn. (8).

Theorem 2. Let A ∈ Rn×d and G ∈ Rd×c be as defined
in Section 1. Assume that for some constant 0 < ε < 1
the sketching matrix S ∈ Rd×s satisfies eqn. (8). Then,
for any test data point w ∈ Rd, the estimator Ĝ returned
by Algorithm 1 satisfies

‖(w −m)T(Ĝ−G)‖2 ≤
εt

2
√
λ
‖VVT(w −m)‖2 .

Recall that VVT(w −m) is the projection of the vector
w −m onto the row space of A.

Running time of Algorithm 1. First, we need to com-
pute AG̃(j−1) which takes time O(c · nnz(A)). Then,
computing the sketch AS ∈ Rn×s takes T (A,S) time



which depends on the particular construction of S (see
Section 2.2). In order to invert the matrix Θ =
ASSTAT + λIn, it suffices to compute the SVD of the
matrix AS. Notice that given the singular values of AS
we can compute the singular values of Θ and also notice
that the left and right singular vectors of Θ are the same
as the left singular vectors of AS. Interestingly, we do
not need to compute Θ−1: we can store it implicitly by
storing its left (and right) singular vectors UΘ and its
singular values ΣΘ. Then, we can compute all necessary
matrix-vector products using this implicit representation
of Θ−1. Thus, inverting Θ takes O(sn2) time. Updating
the matrices L(j), Y(j), and G̃(j) is dominated by the
aforementioned running times. Thus, summing over all t
iterations, the running time of Algorithm 1 is

O(t c · nnz(A)) +O(s n2) + T (A,S), (10)

which should be compared to theO(n2d) time that would
be needed by standard RFDA approaches.

We note that our algorithm can also be viewed as a pre-
conditioned Richardson iteration with step-size equal to
one for solving the linear system (AAT + λIn)F = Ω
in F ∈ Rn×c with randomized pre-conditioner P−1 =
(ASSTAT + λIn)

−1. However, our objective and anal-
ysis are significantly different compared to the conven-
tional preconditioned Richardson iteration. First, our
matrix of interest is G = ATF ∈ Rd×c, whereas stan-
dard analysis of the preconditioned Richardson iteration
is with respect to F. Specifically, in the context of dis-
criminant analysis, for a new observation w ∈ Rd, we
are interested in understanding whether the output of our
algorithm closely approximates the original point in the
projected space, i.e., if ‖(w −m)T(Ĝ −G)‖2 is suffi-
ciently small. To the best of our knowledge, standard
analysis of preconditioned Richardson iteration does not
yield a bound for ‖(w −m)T(Ĝ −G)‖2. Second, our
analysis is with respect to the Euclidean norm whereas
the standard analysis is in terms of the energy-norm of
(AAT + λIn), as the matrix P−1(AAT + λIn) is not
symmetric positive definite.

Finally, we note that our proof also holds when different
sampling matrices Sj (for j = 1, . . . , t) are used in each
iteration, as long as they satisfy the constraints of eqns. (5)
or (8). In fact, the sketching matrices Sj do not even need
to have the same number of columns (see Section 5 for
an open problem in this setting).

2.2 SATISFYING THE STRUCTURAL
CONDITIONS

The structural conditions of eqns. (5) and (8) essentially
boil down to randomized, approximate matrix multipli-
cation [11, 12], a task that has received much attention

in the randomized linear algebra community. We discuss
general sketching-based approaches here and defer the
discussion of sampling-based approaches and the corre-
sponding results to Appendix E. A particularly useful
result for our purposes appeared in [9]. Under our nota-
tion, [9] proved that for Z ∈ Rd×n and for a (suitably
constructed) sketching matrix S ∈ Rd×s, with probability
at least 1− δ,

‖ZTSSTZ− ZTZ‖2 ≤ ε
(
‖Z‖22 +

‖Z‖2F
r

)
. (11)

This bound holds for a broad family of constructions
for the sketching matrix S (see [9] for details). In
particular, [9] demonstrated a construction for S with
s = O(r/ε2) columns such that, for any n× d matrix A,
the product AS can be computed in time O(nnz(A)) +
Õ((r3 + r2n)/εγ) for some constant γ. Thus, start-
ing with eqn. (5) and using this particular construction
for S, let Z = VΣλ and note that ‖VΣλ‖2F = dλ and
‖VΣλ‖2 ≤ 1. Setting r = dλ, eqn. (11) implies that

‖ΣλV
TSSTVΣλ −Σ2

λ‖2 ≤ 2 ε.

In this case, the running time needed to compute
the sketch equals T (A,S) = O(nnz(A)) + Õ(d2λn/εγ).
The running time of the overall algorithm follows from
eqn. (10) and our choices for s and r:

O(t c · nnz(A)) + Õ(dλn2/εmax{2,γ}).

The failure probability (hidden in the polylogarithmic
terms) can be easily controlled using a union bound. Fi-
nally, a simple change of variables (using ε/4 instead of
ε) suffices to satisfy the structural condition of eqn. (5)
without changing the above running time.

Similarly, starting with eqn. (8), let Z = V and note that
‖V‖2F = ρ and ‖V‖2 = 1. Setting r = ρ, eqn. (11)
implies that ‖VTSSTV − Iρ‖2 ≤ 2ε. In this case,
the running time of the sketch computation is equal to
T (A,S) = O(nnz(A))+ Õ(ρ2n/εγ). The running time
of the overall algorithm follows from eqn. (10) and our
choices for s and r:

O(t c · nnz(A)) + Õ(ρn2/εmax{2,γ}).

Again, a simple change of variables suffices to satisfy
eqn. (8) without changing the running time.

We note that the above running times can be slightly
improved if s is smaller than n, since s depends only
on the effective degrees of freedom (dλ) of the prob-
lem (or, on the rank ρ of the data matrix A). In
this case, the SVD of AS can be computed in O(ns2)
time, and the running time of our algorithm is given
by O(t c · nnz(A)) + Õ(d2λn/εmax{4,γ}) (or, O(t c ·
nnz(A)) + Õ(ρ2n/εmax{4,γ})).



3 SKETCHING THE PROOF OF
THEOREM 1

Due to space considerations, most of our proofs have been
deferred to the Appendix. However, to provide a flavor of
the mathematical derivations underlying our contributions,
we will present an outline of the proof of Theorem 1.

Using the quantities defined in Algorithm 1, let

G(j) = AT(AAT + λIn)
−1L(j), j = 1, . . . , t. (12)

Note that G = G(1). We remind the reader that U ∈
Rn×ρ, V ∈ Rd×ρ and Σ ∈ Rρ×ρ are, respectively, the
matrices of the left singular vectors, right singular vectors
and singular values of A. We will make extensive use
of the matrix Σλ defined in eqn. (6). The next result
provides an alternative expression for G(j).

Lemma 3. For j = 1, . . . , t, let L(j) be the intermediate
matrices in Algorithm 1 and G(j) be the matrix defined
in eqn. (12). Then for any j = 1, . . . , t, G(j) can also be
expressed as

G(j) = VΣ2
λΣ
−1UTL(j). (13)

Proof. Using the full SVD representation of A, we have

G(j) = VfΣ
T
fUT

f (UfΣfΣ
T
fUT

f + λUfU
T
f )
−1L(j)

=VfΣ
T
f (ΣfΣ

T
f + λIn)

−1UT
fL(j)

=
(
V V⊥

)(Σ 0
0 0

)[(
Σ2 0
0 0

)
+ λIn

]−1(
UT

UT
⊥

)
L(j)

=
(
V V⊥

)(Σ 0
0 0

)[(
Σ2 + λIρ 0

0 λIn−ρ

)]−1(
UT

UT
⊥

)
L(j)

=
(
V V⊥

)(Σ 0
0 0

)(
(Σ2 + λIρ)

−1 0
0 1

λIn−ρ

)(
UT

UT
⊥

)
L(j)

=
(
V V⊥

)(Σ(Σ2 + λIρ)
−1 0

0 0

)(
UT

UT
⊥

)
L(j)

=VΣ(Σ2 + λIρ)
−1UTL(j)

=VΣΣ−1(Iρ + λΣ−2)−1Σ−1UTL(j)

=VΣ2
λΣ
−1UTL(j) ,

which completes the proof.

Our next result (see Appendix C for a detailed proof)
provides a bound which later on plays an important role
in showing that the underlying error decays exponentially
as the number of iterations in Algorithm 1 increases. We
state the lemma and outline its proof.

Lemma 4. For j = 1, . . . , t, let L(j) be as defined in
Algorithm 1 and let G̃(j) be defined as in eqn. (12).
Further, let S ∈ Rd×s be the sketching matrix and let

E = ΣλV
TSSTVΣλ −Σ2

λ. If eqn. (5) is satisfied, i.e.,
‖E‖2 ≤ ε

2 , then, for all j = 1, . . . , t,

‖(w −m)T(G̃(j) −G(j))‖2
≤ ε ‖VVT(w −m)‖2 ‖ΣλΣ

−1UTL(j)‖2 . (14)

Proof sketch. Applying Lemma 3 and using the SVD of
A and the fact that ‖E‖2 < 1, we first express the inter-
mediate matrices G̃(j) of Algorithm 1 in terms of the
matrices G(j) of eqn. (12) as

G̃(j) = G(j) + VΣλQΣλΣ
−1UTL(j), (15)

where Q =
∑∞
`=1(−1)`E`. Notice that

‖Q‖2 =
∥∥∥ ∞∑
`=1

(−1)`E`
∥∥∥
2
≤
∞∑
`=1

‖E`‖2

≤
∞∑
`=1

‖E‖`2 ≤
∞∑
`=1

(ε
2

)`
=

ε/2

1− ε/2
≤ ε . (16)

In the above, we used the triangle inequality, submulti-
plicativity of the spectral norm, and the fact that ε ≤ 1.
Next, we plug-in eqn. (15) and apply submultiplicativity
to conclude

‖(w −m)T(G̃(j) −G(j))‖2
= ‖(w −m)TVΣλQΣλΣ

−1UTL(j)‖2
≤ ‖(w −m)TV‖2 ‖Σλ‖2 ‖Q‖2 ‖ΣλΣ

−1UTL(j)‖2
≤ ε ‖VVT(w −m)‖2 ‖ΣλΣ

−1UTL(j)‖2,

where the last inequality follows from eqn. (16) and the
fact that ‖Σλ‖2 ≤ 1.

The next lemma presents a structural result for G.

Lemma 5. Let G̃(j), j = 1, . . . , t be the sequence of
matrices introduced in Algorithm 1 and let G(t) ∈ Rd be
defined as in eqn. (12). Then, the matrix G in eqn. (3)
can be expressed as

G = G(t) +

t−1∑
j=1

G̃(j). (17)

Proof. We prove the lemma by induction on t. Notice
that L(1) = Ω; thus, for t = 1, eqn. (12) boils down to

G(1) = AT(AAT + λIn)
−1L(1) = G.

For t = 2, we get

G(2) = AT(AAT + λIn)
−1L(2)

= AT(AAT + λIn)
−1(L(1) − λY(1) −AG̃(1))

= AT(AAT + λIn)
−1L(1)



−AT(ASSTAT + λIn)
−1L(1) (18)

= G− G̃(1).

Here, eqn. (18) follows from the fact that Y(1) =
(ASSTAT + λIn)

−1L(1). Now, suppose that eqn. (17)
is also true for t = p, i.e.,

G(p) = G−
p−1∑
j=1

G̃(j). (19)

Then, for t = p+ 1, we can express G(t) as

G(p+1) = AT(AAT + λIn)
−1L(p+1)

= AT(AAT + λIn)
−1(L(p) − λY(p) −AG̃(p))

= AT(AAT + λIn)
−1L(p)

−AT(ASSTAT + λIn)
−1L(p) (20)

= G(p) − G̃(p) =
(
G−

∑p−1
j=1 G̃(j)

)
− G̃(p)

= G−
∑p
j=1 G̃(j) ,

where eqn. (20) holds as Y(p) = (ASSTAT +
λIn)

−1L(p). Furthermore, the second last equality fol-
lows from eqn. (19). By the induction principle, we have
proven eqn. (17).

Repeated application of Lemmas 5 and 4 yields:

‖(w −m)T(Ĝ−G)‖2
= ‖(w −m)T(

∑t
j=1 G̃(j) −G)‖2 (21)

= ‖(w −m)T(G̃(t) − (G−
∑t−1
j=1 G̃(j)))‖2

≤ ‖(w −m)T(G̃(t) −G(t))‖2
≤ ε ‖VVT(w −m)‖2‖ΣλΣ

−1UTL(t)‖2. (22)

The next bound (see Appendix C for its detailed proof)
provides a critical inequality that can be used recursively
in order to establish Theorem 1.
Lemma 6. Let L(j), j = 1, . . . , t be the matrices defined
in Algorithm 1. For any j = 1, . . . , t − 1, if eqn. (5) is
satisfied, i.e., ‖E‖2 ≤ ε

2 , then

‖ΣλΣ
−1UTL(j+1)‖2 ≤ ε ‖ΣλΣ

−1UTL(j)‖2. (23)

Proof sketch. From Algorithm 1, we have that for j =
1, . . . , t− 1,

L(j+1) = L(j) − λY(j) −AG̃(j)

= L(j) − (AAT + λIn)(ASSTAT + λIn)
−1L(j).

(24)

Applying the SVD of A it can be shown (see Appendix C
for details) that

(AAT + λIn)(ASSTAT + λIn)
−1L(j)

=L(j) + U(Σ2 + λIρ)Σ
−1ΣλQΣλΣ

−1UTL(j),
(25)

where Q =
∑∞
`=1(−1)`E`.

Combining eqns. (24) and (25), we get

L(j+1) = −U(Σ2 + λIρ)Σ
−1ΣλQΣλΣ

−1UTL(j).
(26)

Finally, applying eqn. (26), we obtain

‖ΣλΣ
−1UTL(j+1)‖2

= ‖ΣλΣ
−1UTU(Σ2 + λIρ)Σ

−1ΣλQΣλΣ
−1UTL(j)‖2

= ‖ΣλΣ
−1(Σ2 + λIρ)Σ

−1ΣλQΣλΣ
−1UTL(j)‖2

= ‖QΣλΣ
−1UTL(j)‖2 ≤ ‖Q‖2‖ΣλΣ

−1UTL(j)‖2
≤ ε ‖ΣλΣ

−1UTL(j)‖2

where the third equality holds since ΣλΣ
−1(Σ2 +

λIρ)Σ
−1Σλ = Iρ. The last two inequalities follow

from sub-multiplicativity and the fact that ‖Q‖2 ≤ ε
(by eqn. (16)).

Proof of Theorem 1. Applying Lemma 6 iteratively, we
obtain

‖ΣλΣ
−1UTL(t)‖2 ≤ ε ‖ΣλΣ

−1UTL(t−1)‖2
≤ · · · ≤ εt−1‖ΣλΣ

−1UTL(1)‖2. (27)

Notice that L(1) = Ω by definition. Also, ΩTΩ =
Ic and thus ‖Ω‖2 = 1. Furthermore, we know that
‖UT‖2 = 1 and ‖ΣλΣ

−1‖2 = max
1≤i≤ρ

(σ2
i + λ)−

1
2 . Thus,

sub-multiplicativity yields

‖ΣλΣ
−1UTL(1)‖2 ≤ ‖ΣλΣ

−1‖2‖UT‖2‖Ω‖2
= max

1≤i≤ρ
(σ2
i + λ)−

1
2 ≤ λ− 1

2 , (28)

where the last inequality holds since (σ2
i + λ)−

1
2 ≤ λ− 1

2

for all i = 1 . . . ρ.

Finally, combining eqns. (22), (27) and (28), we get

‖(w −m)T(Ĝ−G)‖2 ≤
εt√
λ
‖VVT(w −m)‖2 ,

which concludes the proof.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENT SETUP

We perform experiments on two real-world datasets:
ORL [3] is a database of grey-scale face images with
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Figure 1: Experiment results on ORL (top row) and PEMS (bottom row); errors are on log-scale.

n = 400 examples and d = 10, 304 features, with each
example belonging to one of c = 40 classes; PEMS [26]
describes the occupancy rate of different car lanes in
freeways of the San Francisco bay area, with n = 440
examples, d = 138, 672 features, and c = 7 label classes.

In our experiments, we compare both sketching-based
and sampling-based constructions for the sketching ma-
trix S. For sketching-based approaches (cf. Section 2.2),
we construct S using either the count-sketch matrix [7]
as in [32], and the sub-sampled randomized Hadamard
transform (SRHT) [1]. For sampling-based approaches
(cf. Appendix E), we construct the sampling-and-rescaling
matrix S (cf. Algorithm 3 of Appendix E) using three dif-
ferent choices of sampling probabilities: (i) uniformly at
random, (ii) proportional to column leverage scores, or
(iii) proportional to column ridge leverage scores. Note
that constructing S with uniform sampling probabili-
ties do not in general satisfy the structural conditions
of eqns. (5) and (8).

For each sketching method, we run Algorithm 1 for 50
iterations with a variety of sketch sizes, and measure the
relative approximation error ‖Ĝ −G‖F /‖G‖F , where
G is computed exactly. We also randomly divide each
dataset into a training set with 60% examples and a test
set of 40% examples (stratified by label), and measure the
classification accuracy on the test set with Ĝ estimated
from the training set. For each sketching method, we
repeat 20 random trials and report the means and standard
errors of the experiment results.

4.2 RESULTS AND DISCUSSION

In Figure 1, the first column plots the relative approx-
imation error (for a fixed sketch size) as the iterative
algorithm progresses; the second column plots the rela-
tive approximation error with respect to varying sketch
sizes; and the third column plots the test classification
accuracy obtained using the estimated Ĝ =

∑t
j=1 G̃(j)

after t = 1, . . . , 10 iterations.

For count-sketch, SRHT, as well as leverage score and
ridge leverage score sampling, we observe that the relative
approximation error decays exponentially as our iterative
algorithm progresses.4 In particular, constructing the
sketching matrix S using the sketching-based approaches
appears to yield slightly improved approximation quality
over the sampling-based approaches. Furthermore, while
leverage score and ridge leverage score sampling perform
comparably on the ORL dataset, the latter significantly
outperforms the former on the PEMS dataset. This con-
firms our discussion in Section 1.1: for ridge leverage
score sampling, setting s = O(ε−2dλ ln dλ) suffices to
satisfy the structural condition of eqn. (5), while for lever-
age scores, setting s = O(ε−2ρ ln ρ) suffices to satisfy
the structural condition of eqn. (8). (Recall that ρ can
be substantially larger than the effective degrees of free-
dom dλ.) Finally, we note that the proposed approach
of [32] (see Theorem 3 therein for the d � n setting)
corresponds to running a single iteration of Algorithm 1;
our iterative algorithm yields significant improvements in
the approximation quality of the solutions.

4Except in the last column of Figure 1, we set the regulariza-
tion parameter to λ = 10 in the RFDA problem as well as the
ridge leverage score sampling probabilities.
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Figure 2: Relative approximation error (on log-scale) vs. number of iterations on ORL dataset for increasing sketch
size s. Top row: using a single sketching matrix S throughout. Bottom row: sample a new Sj at every iteration j.

In the last column of Figure 1, we keep the design matrix
unchanged (fixing n) while varying the regularization
parameter λ, and plot the relative approximation error
against the effective degrees of freedom dλ of the RFDA
problem. We observe that the relative approximation error
decreases exponentially as dλ decreases; thus, the sketch
size or number of iterations necessary to achieve a certain
approximation precision also decreases with dλ, even
though n remains fixed.

Finally, an exciting open problem would be to investi-
gate whether the use of independent sampling matrices
in each iteration of Algorithm 1 (i.e., introducing new
“randomness” in each iteration) could lead to provably
improved bounds for our main theorems. We conjecture
that this is indeed the case, and further experiment re-
sults support our conjecture. In particular, Figure 2 plots
the relative approximation error vs. number of iterations
on the PEMS dataset for various increasing sketch sizes;
similar plots for the PEMS dataset are shown in Figure 3
of Appendix G. We observe that using a newly sampled
sketching matrix at every iteration enables faster con-
vergence as the iterations progress, and also reduces the
sketch size s necessary for Algorithm 1 to converge.

5 CONCLUSION AND OPEN
PROBLEMS

We have presented simple structural results to analyze an
iterative, sketching-based RFDA algorithm that guaran-
tees highly accurate solutions compared to conventional
approaches. An obvious open problem is to either im-
prove on the sample size requirement of our sketching
matrix or present matching lower bounds to show that our
bounds are tight. Another open problem would be to ex-
plore similar approaches for other versions of regularized

FDA that use, say, the pseudo-inverse of the centered data
matrix. In addition, unlike the case for sketched ridge
regression [28, 6] where the bias–variance trade-off of
estimators could be explicitly analyzed, such statistical
analyses do not apply to bounding the generalization error
of our proposed RFDA algorithm.
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Randomized Iterative Algorithms for Fisher Discriminant Analysis
(Appendix)

Appendix A PRELIMINARIES

We start by reviewing a result regarding the convergence of a matrix von Neumann series for (I−P)
−1. This will be

an important tool in our analysis.

Proposition 7. Let P be any square matrix with ‖P‖2 < 1. Then (I−P)
−1 exists and

(I−P)
−1

= I +

∞∑
`=1

P`.

Appendix B EVD-BASED ALGORITHMS FOR FDA

For RFDA, we quote an EVD-based algorithm along
with an important result from [36] which together are
the building blocks of our iterative framework. Let M ∈
Rc×c be the matrix such that M = ΩTAG. Clearly, M
is symmetric and positive semi-definite.

Algorithm 2 Algorithm for RFDA problem (3)
Input: A ∈ Rn×d, Ω ∈ Rn×c and λ > 0;
G← (ATA + λId)

−1ATΩ ;
M← ΩTAG;
Compute thin SVD: M = VMΣMVT

M;
Output: X = G VM

Theorem 8. Using Algorithm 2, let X be the solution of problem (3) , then we have

XXT = G GT.

For any two data points w1,w2 ∈ Rd, Theorem 8 implies

(w1 −w2)
TXXT(w1 −w2) = (w1 −w2)

TG GT(w1 −w2)

⇐⇒ ‖(w1 −w2)
TX‖2 = ‖(w1 −w2)

TG‖2.

Theorem 8 indicates that if we use any distance-based classification method such as k-nearest neighbors, both X and G
shares the same property. Thus, we may shift our interest from X to G.

Appendix C PROOF OF THEOREM 1

Proof of Lemma 3. Using the full SVD representation of A we have

G(j) = VfΣ
T
fUT

f (UfΣfΣ
T
fUT

f + λUfU
T
f )
−1L(j)

= VfΣ
T
f (ΣfΣ

T
f + λIn)

−1UT
fL(j)

=
(
V V⊥

)(Σ 0
0 0

)[(
Σ2 0
0 0

)
+ λIn

]−1(
UT

UT
⊥

)
L(j)

=
(
V V⊥

)(Σ 0
0 0

)[(
Σ2 + λIρ 0

0 λIn−ρ

)]−1(
UT

UT
⊥

)
L(j)

=
(
V V⊥

)(Σ 0
0 0

)(
(Σ2 + λIρ)

−1 0
0 1

λIn−ρ

)(
UT

UT
⊥

)
L(j)



=
(
V V⊥

)(Σ(Σ2 + λIρ)
−1 0

0 0

)(
UT

UT
⊥

)
L(j)

= VΣ(Σ2 + λIρ)
−1UTL(j)

= VΣΣ−1(Iρ + λΣ−2)−1Σ−1UTL(j)

= VΣ2
λΣ
−1UTL(j), (29)

which completes the proof.

Detailed proof of Lemma 4. First, using SVD of A, we express G̃(j) in terms of G(j).

G̃(j) = VfΣ
T
fUT

f (UfΣfV
T
fSSTVfΣ

T
fUT

f + λUfU
T
f )
−1L(j)

= VfΣ
T
f (ΣfV

T
fSSTVfΣ

T
f + λIn)

−1UT
fL(j)

=
(
V V⊥

)(Σ 0
0 0

)[(
ΣVTSSTVΣ 0

0 0

)
+ λIn

]−1(
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⊥

)
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0 0

)[(
ΣVTSSTVΣ + λIρ 0

0 λIn−ρ

)]−1(
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UT
⊥

)
L(j)

=
(
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)(Σ 0
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(ΣVTSSTVΣ + λIρ)

−1 0
0 1

λIn−ρ
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UT
⊥

)
L(j)
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)(Σ(ΣVTSSTVΣ + λIρ)
−1 0

0 0

)(
UT
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)
L(j)

= VΣ(ΣVTSSTVΣ + λIρ)
−1UTL(j) (30)

= VΣ
(
ΣΣ−1λ

(
ΣλV

TSSTVΣλ

)
Σ−1λ Σ + λIρ

)−1
UTL(j)

= VΣ
(
ΣΣ−1λ

(
Σ2
λ + E

)
Σ−1λ Σ + λIρ

)−1
UTL(j) (31)

= VΣ
(
ΣΣ−1λ

(
Σ2
λ + E

)
Σ−1λ Σ + λΣΣ−1λ ΣλΣ

−2ΣλΣ
−1
λ Σ

)−1
UTL(j)

= VΣ
(
ΣΣ−1λ

(
Σ2
λ + E + λΣλΣ

−2Σλ

)
Σ−1λ Σ

)−1
UTL(j)

= VΣ
(
ΣΣ−1λ (Iρ + E)Σ−1λ Σ

)−1
UTL(j). (32)

Eqn. (31) used the fact that ΣλV
TSSTVΣλ = Σ2

λ+E. Eqn. (32) follows from the fact that Σ2
λ+λΣλΣ

−2Σλ ∈ Rn×n
is a diagonal matrix with i-th diagonal element(

Σ2
λ + λΣλΣ

−2Σλ

)
ii
=

σ2
i

σ2
i + λ

+
λ

σ2
i + λ

= 1,

for any i = 1 . . . ρ. Thus, we have
(
Σ2
λ + λΣλΣ

−2Σλ

)
= Iρ. Since ‖E‖2 < 1, Proposition 7 implies that (Iρ +E)−1

exists and

(Iρ + E)−1 = Iρ +

∞∑
`=1

(−1)`E` = Iρ + Q.

Thus, eqn. (32) can further be expressed as

G̃(j) = VΣΣ−1Σλ (Iρ + E)
−1

ΣλΣ
−1UTL(j)

= VΣλ (Iρ + Q)ΣλΣ
−1UTL(j)
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λΣ
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−1UTL(j), (33)

where the last line follows from Lemma 3. Further, we have
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(−1)`E`‖2 ≤
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`=1

‖E`‖2 ≤
∞∑
`=1
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(ε
2

)`
=

ε/2

1− ε/2
≤ ε , (34)



where we used the triangle inequality, the sub-multiplicativity of the spectral norm, and the fact that ε ≤ 1. Next, we
combine eqns. (33) and (34) to get

‖(w −m)T(G̃(j) −G(j))‖2 = ‖(w −m)TVΣλQΣλΣ
−1UTL(j)‖2

≤ ‖(w −m)TV‖2‖Σλ‖2‖Q‖2‖ΣλΣ
−1UTL(j)‖2

≤ ε ‖(w −m)TV‖2‖ΣλΣ
−1UTL(j)‖2

= ε ‖VVT(w −m)‖2‖ΣλΣ
−1UTL(j)‖2, (35)

which completes the proof.

The next bound provides a critical inequality that can be used recursively to establish Theorem 1.

Detailed proof of Lemma 6. From Algorithm 1, we have for j = 1 . . . t− 1

L(j+1) = L(j) − λY(j) −AG̃(j)

= L(j) − (AAT + λIn)(ASSTAT + λIn)
−1L(j). (36)

Now, starting with the full SVD of A, we get
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Here, eqn. (38) holds because ΣλV
TSSTVΣλ = Σ2

λ + E and the fact that Σ2
λ + λΣλΣ

−2Σλ ∈ Rn×n is a diagonal
matrix whose ith diagonal element satisfies(
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= 1,
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(
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= Iρ. Since ‖E‖2 < 1, Proposition 7 implies that (Iρ +E)−1
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(Iρ + E)−1 = Iρ +
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where Q =
∑∞
`=1(−1)`E`.

Thus, we rewrite eqn. (38) as
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Eqn. (39) holds as (Σ2 + λIρ)Σ
−1Σ2

λΣ
−1 = Iρ. Further, using the fact that UfU

T
f = In, we rewrite eqn. (40) as
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−1ΣλQΣλΣ
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Thus, combining eqns. (36) and (41), we have

L(j+1) = −U(Σ2 + λIρ)Σ
−1ΣλQΣλΣ

−1UTL(j). (42)

Finally, using eqn. (42), we obtain
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where the third equality holds as ΣλΣ
−1(Σ2+λIρ)Σ

−1Σλ = Iρ and the last two steps follow from sub-multiplicativity
and eqn. (34) respectively. This concludes the proof.

Proof of Theorem 1. Applying Lemma 6 iteratively, we get

‖ΣλΣ
−1UTL(t)‖2 ≤ ε ‖ΣλΣ

−1UTL(t−1)‖2 ≤ . . . ≤ εt−1‖ΣλΣ
−1UTL(1)‖2. (43)

Now, from eqn (43), we apply sub-multiplicativity to obtain

‖ΣλΣ
−1UTL(1)‖2 = ‖ΣλΣ

−1UTΩ‖2 ≤ ‖ΣλΣ
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Notice that L(1) = Ω by definition. Also, ΩTΩ = Ic and thus ‖Ω‖2 = 1. Furthermore, we know that ‖UT‖2 = 1 and
‖ΣλΣ

−1‖2 = max
1≤i≤ρ

(σ2
i + λ)−

1
2 and the last inequality holds since (σ2

i + λ)−
1
2 ≤ λ− 1

2 for all i = 1 . . . ρ.

Finally, combining eqns. (22), (43) and (44), we conclude

‖(w −m)T(Ĝ−G)‖2 ≤
εt√
λ
‖VVT(w −m)‖2,

which completes the proof.

Appendix D PROOF OF THEOREM 2

Lemma 9. For j = 1 . . . t, let L(j) and G̃(j) be the intermediate matrices in Algorithm 1, G(j) be the matrix
defined in eqn. (12) and R be defined as in Lemma 3. Further, let S ∈ Rd×s be the sketching matrix and define
Ê = VTSSTV − Iρ. If eqn. (8) is satisfied, i.e., ‖Ê‖2 ≤ ε

2 , then for all j = 1, . . . , t, we have

‖(w −m)T(G̃(j) −G(j))‖2 ≤ ε ‖VVT(w −m)‖2 ‖R−1Σ−1UTL(j)‖2 , (45)

where R = Iρ + λΣ−2.



Proof. Note that Σ2
λ = R−1. Applying Lemma 3, we can express G(j) as

G(j) = VR−1Σ−1UTL(j). (46)

Next, rewriting eqn. (30) gives

G̃(j) = VΣ(ΣVTSSTVΣ + λIρ)
−1UTL(j) (47)

= VΣ(Σ(Iρ + Ê)Σ + λIρ)
−1UTL(j) = VΣΣ−1(Iρ + Ê + λΣ−2)−1Σ−1UTL(j)

= V(R + Ê)−1Σ−1UTL(j) = V(R(Iρ + R−1Ê))−1Σ−1UTL(j) . (48)

Further, notice that

‖R−1Ê‖2 ≤ ‖R−1‖2‖Ê‖2 ≤ ‖R−1‖2 ·
ε

2
=

(
σ2
1

σ2
1 + λ

)
ε

2
≤ ε

2
< 1. (49)

Now, Proposition 7 implies that (Iρ + R−1Ê)−1 exists. Let Q̂ =
∑∞
`=1(−1)`(R−1Ê)`, we have

(Iρ + R−1Ê)−1 = Iρ +

∞∑
`=1

(−1)`(R−1Ê)` = Iρ + Q̂.

Thus, we can rewrite eqn. (48) as

G̃(j) = V(Iρ + Q̂)R−1Σ−1UTL(j)

= VR−1Σ−1UTL(j) + VQ̂R−1Σ−1UTL(j)

= G(j) + VQ̂R−1Σ−1UTL(j), (50)

where eqn. (50) follows eqn. (46). Further, using eqn. (49), we have

‖Q̂‖2 = ‖
∞∑
`=1

(−1)`(R−1Ê)`‖2 ≤
∞∑
`=1

‖(R−1Ê)`‖2 ≤
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`=1

‖R−1Ê‖`2 ≤
∞∑
`=1

(ε
2

)`
=

ε/2

1− ε/2
≤ ε, (51)

where we used the triangle inequality, sub-multiplicativity of the spectral norm, and the fact that ε ≤ 1. Next, we
combine eqns. (50) and (51) to get

‖(w −m)T(G̃(j) −G(j))‖2 = ‖(w −m)TVQ̂R−1Σ−1UTL(j)‖2
≤ ‖(w −m)TV‖2‖Q̂‖2‖R−1Σ−1UTL(j)‖2
≤ ε ‖(w −m)TV‖2‖R−1Σ−1UTL(j)‖2
= ε ‖(w −m)TVVT‖2‖R−1Σ−1UTL(j)‖2
= ε ‖VVT(w −m)‖2‖R−1Σ−1UTL(j)‖2, (52)

where the first inequality follows from sub-multiplicativity and the second last equality holds due to the unitary
invariance of the spectral norm. This concludes the proof.

Remark 10. Repeated application of Lemmas 5 and 9 yields:

‖(w −m)T(Ĝ−G)‖2 = ‖(w −m)T
( t∑
j=1

G̃(j) −G
)
‖2 = ‖(w −m)T(G̃(t) −

(
G−

t−1∑
j=1

G̃(j)
)
)‖2

= ‖(w −m)T(G̃(t) −G(t))‖2 ≤ ε ‖VVT(w −m)‖2 ‖R−1Σ−1UTL(t)‖2. (53)

The next bound provides a critical inequality that can be used recursively in order to establish Theorem 2.

Lemma 11. Let L(j), j = 1, . . . , t, be the matrices of Algorithm 1 and R is as defined in Lemma 3. For any
j = 1, . . . , t− 1, define Ê = VTSSTV − Iρ. If eqn. (8) is satisfied i.e.‖Ê‖2 ≤ ε

2 , then

‖R−1Σ−1UTL(j+1)‖2 ≤ ε ‖R−1Σ−1UTL(j)‖2. (54)



Proof. From Algorithm 1, we have for j = 1, . . . , t− 1,

L(j+1) = L(j) − λY(j) −AG̃(j) = L(j) − (AAT + λIn)(ASSTAT + λIn)
−1L(j). (55)

Rewriting eqn. (37), we have

(AAT + λIn)(ASSTAT + λIn)
−1L(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)(ΣVTSSTVΣ + λIρ)

−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)(Σ(Iρ + Ê)Σ + λIρ)

−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1(Iρ + Ê + λΣ−2)−1Σ−1UTL(j). (56)

Here, eqn. (56) holds because (Iρ + Ê + λΣ−2) is invertible since it is a positive definite matrix. In addition, using the
fact that R = (Iρ + λΣ−2), we rewrite eqn. (56) as

(AAT + λIn)(ASSTAT + λIn)
−1L(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1(R + Ê)−1Σ−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1
(
R(Iρ + R−1Ê)

)−1
Σ−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1(Iρ + R−1Ê)−1R−1Σ−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1(Iρ + Q̂)R−1Σ−1UTL(j)

= U⊥UT
⊥L(j) + U(Σ2 + λIρ)Σ

−1R−1Σ−1UTL(j) + U(Σ2 + λIρ)Σ
−1Q̂R−1Σ−1UTL(j)

= (UUT + U⊥UT
⊥)L

(j) + U(Σ2 + λIρ)Σ
−1Q̂R−1Σ−1UTL(j)

= UfU
T
fL(j) + U(Σ2 + λIρ)Σ

−1Q̂R−1Σ−1UTL(j). (57)

The second and third equalities follow from Proposition 7 (using eqn. (49)) and the fact that R−1 exists. Further, Q̂ is
as defined as in Lemma 9. Moreover, the second last equality holds as (Σ2 + λIρ)Σ

−1R−1Σ−1 = Iρ. Now, using the
fact that UfU

T
f = In, we rewrite eqn. (57) as

(AAT + λIn)(ASSTAT + λIn)
−1L(j) = L(j) + U(Σ2 + λIρ)Σ

−1Q̂R−1Σ−1UTL(j). (58)

Thus, combining, eqns. (55) and (58), we have

L(j+1) = −U(Σ2 + λIρ)Σ
−1Q̂R−1Σ−1UTL(j). (59)

Finally, from eqn. (59), we obtain

‖R−1Σ−1UTL(j+1)‖2 = ‖R−1Σ−1UTU(Σ2 + λIρ)Σ
−1Q̂R−1Σ−1UTL(j)‖2

= ‖R−1Σ−1(Σ2 + λIρ)Σ
−1Q̂R−1Σ−1UTL(j)‖2

= ‖Q̂R−1Σ−1UTL(j)‖2 ≤ ‖Q̂‖2‖R−1Σ−1UTL(j)‖2
≤ ε ‖R−1Σ−1UTL(j)‖2, (60)

where the third equality holds as R−1Σ−1(Σ2 +λIρ)Σ
−1 = Iρ and the last two steps follow from sub-multiplicativity

and eqn. (51) respectively. This concludes the proof.

Proof of Theorem 2. Applying Lemma 11 iteratively, we have

‖R−1Σ−1UTL(t)‖2 ≤ ε ‖R−1Σ−1UTL(t−1)‖2 ≤ . . . ≤ εt−1 ‖R−1Σ−1UTL(1)‖2 . (61)

Now, from eqn (61) and noticing that L(1) = Ω by definition, we have

‖R−1Σ−1UTL(1)‖2 ≤ ‖R−1Σ−1‖2‖UT‖2‖Ω‖2 = max
1≤i≤ρ

{
σi

σ2
i + λ

}
≤ 1

2
√
λ
, (62)



where we used sub-multiplicativity and the facts that ‖UT‖2 = 1, ΩTΩ = Ic, and ‖Ω‖2 = 1. The last step in eqn. (62)
holds since for all i = 1 . . . ρ,

(σi −
√
λ)2 ≥ 0 ⇒ σ2

i + λ ≥ 2σi
√
λ ⇒ σi

σ2
i + λ

≤ 1

2
√
λ
. (63)

Finally, combining eqns. (53), (61) and (62), we obtain

‖(w −m)T(Ĝ−G)‖2 ≤
εt

2
√
λ
‖VVT(w −m)‖2 ,

which concludes the proof.

Appendix E SAMPLING-BASED CONSTRUCTIONS

We now discuss how to satisfy the conditions of eqns. (5) or (8) by sampling, i.e., selecting a small number of features.
Towards that end, consider Algorithm 3 for the construction of the sampling-and-rescaling matrix S. Finally, the next
result appeared in [6] as Theorem 3 and is a strengthening of Theorem 4.2 of [20], since the sampling complexity s is
improved to depend only on ‖Z‖2F instead of the stable rank of Z when ‖Z‖2 ≤ 1. We also note that Lemma 12 is
implicit in [8] .

Algorithm 3 Sampling-and-rescaling matrix
Input: Sampling probabilities pi, i = 1, . . . , d;

number of sampled columns s� d;
S← 0d×s;
for t = 1 to s do

Pick it ∈ {1, . . . , d} with P(it = i) = pi;
Sitt = 1/

√
s pit ;

end for
Output: Return S;

Lemma 12. Let Z ∈ Rd×n with ‖Z‖2 ≤ 1 and let S be
constructed by Algorithm 3 with

s ≥ 8‖Z‖2F
3 ε2

ln

(
4 (1 + ‖Z‖2F )

δ

)
,

then, with probability at least 1− δ,

‖ZTSSTZ− ZTZ‖2 ≤ ε.

Applying Lemma 12 with Z = VΣλ, we can satisfy the condition of eqn. (5) using the sampling probabilities
pi = ‖(VΣλ)i∗‖22/dλ (recall that ‖VΣλ‖2F = dλ and ‖VΣλ‖2 ≤ 1). It is easy to see that these probabilities are
exactly proportional to the column ridge leverage scores of the design matrix A. Setting s = O(ε−2dλ ln dλ) suffices to
satisfy the condition of eqn. (5). We note that approximate ridge leverage scores also suffice and that their computation
can be done efficiently without computing V [8]. Finally, applying Lemma 12 with Z = V we can satisfy the condition
of eqn. (8) by simply using the sampling probabilities pi = ‖Vi∗‖22/ρ (recall that ‖V‖2F = ρ and ‖V‖2 = 1), which
correspond to the column leverage scores of the design matrix A. Setting s = O(ε−2ρ ln ρ) suffices to satisfy the
condition of eqn. (8). We note that approximate leverage scores also suffice and that their computation can be done
efficiently without computing V [13].

Appendix F SKETCH-SIZE REQUIREMENTS FOR STRUCTURAL CONDITIONS

We provide details on the sketch-size requirements for satisfying the structual conditions of eqns. (5) or (8) when
various constructions of the sketching matrix S are used. It was shown in [9] that eqn. (11) can be achieved using a
count-sketch matrix S with s = O( r

δε2 ) columns or an SRHT matrix S with s = O(ε−2(r + log(1/εδ)) log r
δ ) columns

(here, δ is the failure probability). As discussed in Section 2.2, setting r = dλ or r = ρ in eqn. (11) for eqns. (5) or (8),
respectively, we obtain the sketch-size requirements summarized in Table 1.

Appendix G ADDITIONAL EXPERIMENT RESULTS

Table 2 shows the CPU wall-clock times for running RFDA (on a single-core Intel Xeon E5-2660 CPU at 2.6GHz)
by either computing G exactly in eqn. (3) or via our iterative algorithm. For both datasets, we report the per-iteration
runtime of our algorithm with various sketching-matrix constructions using a sketch size of s = 5, 000.



Count-sketch SRHT Sampling (Appendix E)

Eqn. (5) s = O
(
dλ
δε2

)
s = O

(
dλ+log(1/εδ)

ε2 log dλ
δ

)
s = O

(
dλ log(dλ/δ)

ε2

)
Eqn. (8) s = O

(
ρ
δε2

)
s = O

(
ρ+log(1/εδ)

ε2 log ρ
δ

)
s = O

(
ρ log(ρ/δ)

ε2

)
Table 1: Sketch-size requirements for satisfying eqns. (5) or (8) with probability at least 1− δ.

Dataset SVD Exact Uniform Leverage Ridge leverage Count-sketch

ORL 1.335 0.232 0.101 0.101 0.101 0.103
PEMS 35.781 3.770 0.917 0.892 0.899 0.970

Table 2: CPU wall-clock times (in seconds) for RFDA on ORL and PEMS.

As noted in Section 5, we conjecture that using independent sampling matrices in each iteration of Algorithm 1 (i.e.,
introducing new “randomness” in each iteration) could lead to improved bounds for our main theorems. We evaluate
this conjecture empirically by comparing the performance of Algorithm 1 using either a single sketching matrix S (the
setup in the main paper) or sampling (independently) a new sketching matrix at every iteration j.

Figure 3 shows the relative approximation error vs. number of iterations on the PEMS dataset for increasing sketch
sizes. Figure 4 plots the relative approximation error vs. sketch size after 10 iterations of Algorithm 1 were run. We
observe that using a newly sampled sketching matrix at every iteration enables faster convergence as the iterations
progress, and also reduces the sketch size s necessary for Algorithm 1 to converge.
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(a) s = 6000
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(c) s = 8000
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(e) s = 10000

Figure 3: Relative approximation error (on log-scale) vs. number of iterations on PEMS dataset for increasing sketch
size s. Top row: using a single sketching matrix S throughout. Bottom row: sample a new Sj at every iteration j.
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(b) ORL; multiple Sj
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(c) PEMS; single S
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Figure 4: Relative approximation error vs. sketch size on ORL and PEMS after 10 iterations. Single S: using a single
sketching matrix S throughout the iterations. Multiple Sj : sample a new Sj at every iteration j. Errors are on log-scale;
note the difference in magnitude of the approximation errors across plots.


	INTRODUCTION
	OUR CONTRIBUTIONS
	PRIOR WORK
	NOTATION

	ITERATIVE, SKETCHED FISHER DISCRIMINANT ANALYSIS
	AN ITERATIVE, SKETCHING-BASED ALGORITHM
	SATISFYING THE STRUCTURAL CONDITIONS

	SKETCHING THE PROOF OF THEOREM 1
	EMPIRICAL EVALUATION
	EXPERIMENT SETUP
	RESULTS AND DISCUSSION

	CONCLUSION AND OPEN PROBLEMS
	PRELIMINARIES
	EVD-BASED ALGORITHMS FOR FDA
	PROOF OF THEOREM 1
	PROOF OF THEOREM 2
	SAMPLING-BASED CONSTRUCTIONS
	SKETCH-SIZE REQUIREMENTS FOR STRUCTURAL CONDITIONS
	ADDITIONAL EXPERIMENT RESULTS

