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Abstract. Principal component analysis (PCA) is a widely used dimen-
sionality reduction technique in machine learning and multivariate statis-
tics. To improve the interpretability of PCA, various approaches to
obtain sparse principal direction loadings have been proposed, which are
termed Sparse Principal Component Analysis (SPCA). In this paper,
we present ThreSPCA, a provably accurate algorithm based on threshold-
ing the Singular Value Decomposition for the SPCA problem, without
imposing any restrictive assumptions on the input covariance matrix. Our
thresholding algorithm is conceptually simple; much faster than current
state-of-the-art; and performs well in practice. When applied to genotype
data from the 1000 Genomes Project, ThreSPCA is faster than previous
benchmarks, at least as accurate, and leads to a set of interpretable
biomarkers, revealing genetic diversity across the world.

Keywords: Sparse PCA · Population stratification · Principal
Component Analysis · Population structure

1 Introduction

Principal Component Analysis (PCA) and the related Singular Value Decompo-
sition (SVD) are fundamental data analysis and dimensionality reduction tools
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that are used across a wide range of areas including machine learning, multivari-
ate statistics, and many others. These tools return a set of orthogonal vectors of
decreasing importance that are often interpreted as fundamental latent factors
that underlie the observed data. Even though the vectors returned by PCA and
SVD have strong optimality properties, they are notoriously difficult to inter-
pret in terms of the underlying processes generating the data [18], since they
are linear combinations of all available data points or all available features. The
concept of Sparse Principal Components Analysis (SPCA) was introduced in the
seminal work of [11], where sparsity constraints were enforced on the singular
vectors in order to improve interpretability; see for example, document analysis
applications in [11,18,22].

Formally, given a positive semidefinite (PSD) matrix A ∈ R
n×n, SPCA can

be defined as the constrained maximization problem:1

Z∗ = max
x∈Rn, ‖x‖2≤1

x�Ax, subject to ‖x‖0 ≤ k. (1)

In the above formulation, A is a covariance matrix representing, for exam-
ple, all pairwise feature or object similarities for an underlying data matrix.
Therefore, SPCA can be applied to either the object or feature space of the
data matrix, while the parameter k controls the sparsity of the resulting vector
and is part of the input. Let x∗ denote a vector that achieves the optimal value
Z∗ in the above formulation. Intuitively, the optimization problem of Eq. (1)
seeks a sparse, unit norm vector x∗ that maximizes the data variance. It is well-
known that solving the above optimization problem is NP-hard [20] and that
its hardness is due to the sparsity constraint. Indeed, if the sparsity constraint
were removed, then the resulting optimization problem can be easily solved by
computing the top left or right singular vector of A and its maximal value Z∗

is equal to the top singular value of A.
In this work, we explore the potential of SPCA in the analysis of genetics

data leveraging a provably accurate thresholding algorithm for SPCA. In genet-
ics, PCA is a tool of paramount importance and is ubiquitously used to estimate
population structure and extract ancestry information [23]. It is well-known that
genome-wide association studies (GWAS) that attempt to identify genetic mark-
ers that are associated with complex traits in a typical case/control setting can be
grossly confounded by the underlying population structure, due to the presence
of subgroups in the population that belong to different ancestries in both the
case and control groups [24]. To account for such population stratification and
to minimize the underlying spurious associations, researchers typically use the
top few principal components as covariates in the underlying model. However,
the principal components are linear combinations of all available genetic markers
and, therefore, are not interpretable. SPCA is an obvious remedy towards that
end, since one can use it to identify Single Nucleotide Polymorphisms (SNPs)

1 Recall that the p-th power of the �p norm of a vector x ∈ R
n is defined as ‖x‖p

p =∑n
i=1 |xi|p for 0 < p < ∞. For p = 0, ‖x‖0 is a semi-norm denoting the number of

non-zero entries of x.
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or genetic markers carrying information about the underlying genetic ancestry.
See also [12,13,16] for prior work motivating and using SPCA in the context of
human genetics data analysis.

1.1 Our Contributions

Thresholding is a simple algorithmic concept, where each coordinate of, say, a
vector is retained if its value is sufficiently high; otherwise, it is set to zero.
Thresholding naturally preserves entries that have large magnitude while cre-
ating sparsity by eliminating small entries. Therefore, it seems like a logical
strategy for SPCA: after computing a dense vector that approximately solves a
PCA problem, perhaps with additional constraints, thresholding can be used to
sparsify it.

We present a simple, provably accurate, thresholding algorithm (ThreSPCA,
Sect. 2.1) for SPCA that leverages the fact that the top singular vector is an
optimal solution for the SPCA problem without the sparsity constraint. Our
algorithm actually uses a thresholding scheme that leverages the top few singu-
lar vectors of the underlying covariance matrix; it is simple and intuitive, yet
offers tradeoffs in running time vs. accuracy, the first of its kind. Our algorithm
returns a vector that is provably sparse and, when applied to the input covari-
ance matrix A, provably captures the optimal solution Z∗ up to a small additive
error. Indeed, our output vector has a sparsity that depends on k (the target
sparsity of the original SPCA problem of Eq. (1)) and ε (an accuracy parameter
between zero and one). Our analysis provides unconditional guarantees for the
accuracy of the solution of the proposed thresholding scheme. To the best of
our knowledge, no such analyses have appeared in prior work (see Sect. 1.2 for
details). We emphasize that our approach only requires an approximate SVD
and, as a result, ThreSPCA runs very quickly. In practice, ThreSPCA is much
faster than current state-of-the-art and at least as accurate in the analysis of
human genetics datasets. An additional contribution of our work is that, unlike
prior work, our algorithm has a clear trade-off between quality of approximation
and output sparsity. Indeed, by increasing the density of the final SPCA vector,
one can improve the amount of variance that is captured by our SPCA output.
See Theorem 1 for details on this sparsity vs. accuracy trade-off for ThreSPCA.

Importantly, we evaluate ThreSPCA on the genotype dataset from 1000
Genomes (1KG) Project [10] and on simulated genotype data in order to prac-
tically assess its performance. ThreSPCA identifies functionally relevant, inter-
pretable SNPs from the 1KG data and, from an accuracy perspective, it per-
forms comparably to current state-of-the-art SPCA algorithms while being much
faster than its competitors.

1.2 Prior Work

SPCA was formally introduced by [11]; however, previously studied PCA
approaches based on rotating [14] or thresholding [7] the top singular vector
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of the input matrix seemed to work well, at least in practice, given sparsity con-
straints. Following [11], there has been an abundance of interest in SPCA, with
extensions based on LASSO (ScoTLASS) on an �1 relaxation of the problem [15]
or a non-convex regression-type approximation, penalized similar to LASSO [28].

Prior work that offers provable guarantees, typically given some assumptions
about the input matrix, includes [22], which analyzed a specific set of vectors in a
low-dimensional eigenspace of the input matrix and presented relative error guar-
antees for the optimal objective, given the assumption that the input covariance
matrix has a decaying spectrum. The time complexity of the algorithm of [22]
is given by O(nd+1 log n) (due to solving an exact SVD), where d is the low
rank parameter that affects the accuracy of the output. Even for d = 1, the
theoretical time complexity boils down to O(n2 log n) and it is not clear how to
make use of an approximate SVD algorithm to improve this running time with-
out affecting its theoretical bound. Furthermore, for a high precision output, one
generally needs d to be larger than one, in which case the practical running time
also increases drastically. [1] gave a polynomial-time algorithm that solves sparse
PCA exactly for input matrices of constant rank. [8] showed that sparse PCA
can be approximated in polynomial time within a factor of n−1/3 and also high-
lighted an additive PTAS of [2] based on the idea of finding multiple disjoint
components and solving bipartite maximum weight matching problems. This
PTAS needs time npoly(1/ε), whereas ThreSPCA has running time that depends
on the sparsity of the input data.

SPCA has been applied in the context of human genetics before, in the form
of sparse factor analysis (SFA) [12] and with a penalty term in LASSO (L-PCA)
or Adaptive LASSO (AL-PCA) [16]. However, there are a number of aspects that
our work improves compared to prior studies. First, unlike ThreSPCA, the SFA
method used some prior assumptions on the genotype matrix and none of these
previous studies come with a theoretical guarantee showing a clear sparsity vs.
accuracy trade-off.

Second, prior work has to tune the penalty parameter in [16] several times in
order to achieve a specific sparsity value in practice, which increases the running
time of the method. Third, the convergence of the SPCA algorithm proposed
by [16] depends on an initial PC score, which typically relies on the top right
singular vector of the data and necessitates the computation of an exact SVD,
which is expensive. It is not clear whether replacing the exact SVD with a fast
approximate SVD would affect the results of [16].

2 Materials and Methods

2.1 The THRESPCA Algorithm

Notation. We use bold letters to denote matrices and vectors. For a matrix
A ∈ R

n×n, we denote its (i, j)-th entry by Ai,j ; its i-th row by Ai∗, and its j-th
column by A∗j ; its 2-norm by ‖A‖2 = maxx∈Rn, ‖x‖2=1 ‖Ax‖2; and its (squared)
Frobenius norm by ‖A‖2F =

∑
i,j A2

i,j . We use the notation A � 0 to denote that
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the matrix A is symmetric positive semidefinite (PSD) and Tr(A) =
∑

i Ai,i to
denote its trace, which is also equal to the sum of its singular values. Given a PSD
matrix A ∈ R

n×n, its Singular Value Decomposition is given by A = UΣUT ,
where U is the matrix of left/right singular vectors and Σ is the diagonal matrix
of singular values.

Our Approach: SPCA via SVD Thresholding. To achieve nearly input
sparsity runtime, our thresholding algorithm is based upon using the top � right
(or left) singular vectors of the PSD matrix A. Given A and an accuracy param-
eter ε, our approach first computes Σ� ∈ R

�×� (the diagonal matrix of the top
� singular values of A) and U� ∈ R

n×� (the matrix of the top � left singular
vectors of A), for � = 1/ε. Then, it deterministically selects a subset of O (

k/ε3
)

rows of U� using a simple thresholding scheme based on their squared row norms
(recall that k is the sparsity parameter of the SPCA problem). In the last step,
it returns the top right singular vector of the matrix consisting of the columns
of Σ1/2

� U�
� that correspond to the row indices of U� chosen in the thresholding

step. Notice that this right singular vector is an O (
k/ε3

)
-dimensional vector,

which is finally expanded to a vector in R
n by appropriate padding with zeros.

This sparse vector is our approximate solution to the SPCA problem of Eq. (1).
This simple algorithm is somewhat reminiscent of prior thresholding

approaches for SPCA. However, to the best of our knowledge, no provable a
priori bounds were known for such algorithms without strong assumptions on
the input matrix. This might be due to the fact that prior approaches focused
on thresholding only the top right singular vector of A, whereas our approach
thresholds the top � = 1/ε right singular vectors of A. This slight relaxation
allows us to present provable bounds for the proposed algorithm.

In more detail, let the SVD of A be A = UΣUT . Let Σ� ∈ R
�×� be the

diagonal matrix of the top � singular values and let U� ∈ R
n×� be the matrix

of the top � right (or left) singular vectors. Let R = {i1, . . . , i|R|} be the set
of indices of rows of U� that have squared norm at least ε2/k and let R̄ be its
complement. Here |R| denotes the cardinality of the set R and R∪R̄ = {1, . . . , n}.
Let R ∈ R

n×|R| be a sampling matrix that selects2 the rows of U� whose indices
are in the set R. Given this notation, we are now ready to state Algorithm 1.
Notice that Ry satisfies ‖Ry‖2 = ‖y‖2 = 1 (since R has orthogonal columns)
and ‖Ry‖0 = |R|. Since R is the set of rows of U� with squared norm at least
ε2/k and ‖U�‖2F = � = 1/ε, it follows that |R| ≤ k/ε3. Thus, the vector returned
by Algorithm 1 has k/ε3 sparsity and unit norm. (See the Appendix for more
details.)

Theorem 1. Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy
parameter. Then, the vector z ∈ R

n (the output of Algorithm 1) has sparsity
k/ε3, unit norm, and satisfies

z�Az ≥ Z∗ − 3εTr(A).
2 Each column of R has a single non-zero entry (set to one), corresponding to one of

the |R| selected columns. Formally, Rit,t = 1 for t = 1, . . . , |R|; all other entries of
R are set to zero.
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Algorithm 1. ThreSPCA: fast thresholding SPCA via SVD
Input: A ∈ R

n×n, sparsity k, error parameter ε > 0.
Output: y ∈ R

n such that ‖y‖2 = 1 and ‖y‖0 = k/ε2.
1: � ← 1/ε;
2: Compute U� ∈ R

n×� (top � left singular vectors of A) and Σ� ∈ R
�×� (the

top � singular values of A);
3: Let R = {i1, . . . , i|R|} be the set of rows of U� with squared norm at least

ε2/k and let R ∈ R
n×|R| be the associated sampling matrix (see text for

details);

4: y ∈ R
|R| ← argmax‖x‖2=1

∥
∥
∥Σ1/2

� U�
� Rx

∥
∥
∥
2

2
;

5: return z = Ry ∈ R
n;

The optimality gap of Theorem 1 depends on Tr(A), which is the sum of
the eigenvalues of A and can also be viewed as the total variance of the data.
Therefore, if we divide both sides of the bound in Theorem 1 by Tr(A), the
resulting bound is given by (prop∗ − p̃rop) ≤ 3ε, where for a given k, p̃rop is
the proportion of the total variance explained by the output of ThreSPCA and
prop∗ is the proportion of the total variance explained by the optimal Sparse
PC. Now, trivially, we have (prop∗ − p̃rop) ≥ 0, since prop∗ is the maximum
variance explained by Sparse PC for a given sparsity value. Thus, combining
these two yields 0 ≤ (prop∗ − p̃rop) ≤ 3ε, which can be interpreted as the
quality-of-approximation in terms of the proportion of total variance explained
by ThreSPCA.

The proof of Theorem 1 is deferred to the appendix. See Sect. 1.A for the
proof of Theorem 1 as well as an intermediate result (Lemma 1) that leads to
the final bound in Theorem 1. The running time of Algorithm 1 is dominated
by the computation of the top � singular vectors and singular values of the
matrix A. One could always use the SVD of the full matrix A (O (

n3
)

time)
to compute the top � singular vectors and singular values of A. In practice, any
iterative method, such as subspace iteration using a random initial subspace
or the Krylov subspace of the matrix, can be used towards this end. We now
address the inevitable approximation error incurred by such approximate SVD
methods below.

Using Approximate SVD Algorithms. Although the guarantees of Theo-
rem 1 in Algorithm 1 use an exact SVD computation, which could take time
O (

n3
)
, we can further improve the running time by using an approximate

SVD algorithm such as the randomized block Krylov method of [21], which
runs in nearly input sparsity running time. Our analysis uses the relation-
ships ‖Σ1/2

�,⊥‖22 ≤ Tr(A)/� and σ1(Σ�) ≤ Tr(A). The randomized block Krylov
method of [21] recovers these guarantees up to a multiplicative (1 + ε) factor, in
O (log n/ε1/2 · nnz(A)) time. Here nnz(A) denotes the number of non-zero entries
of the matrix A, which is O (

n2
)

for dense matrices.
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Extracting Additional Sparse PCs. To get multiple sparse PCs using Algo-
rithm 1, we remove the top principal component from the data and run ThreSPCA
on the residual dataset. In other words, let X ∈ R

m×n be the mean-centered data
matrix corresponding to A, i.e., A = X�X. Let v ∈ R

n be the top right singular
vector of X; then, in order to get the second sparse PC, we run ThreSPCA on
the covariance matrix A1 = X�

1 X1, where X1 = X − Xvv�.

2.2 Data

1000 Genome Data. In order to evaluate the speed and accuracy of ThreSPCA
as well as to interpret its output, we first analyzed data from the 1000 Genome
Project (1KG) [10], which contained genotype data from 2,503 individuals with
39,517,397 SNPs sampled from 26 different populations across all continents.
After performing Quality Control (QC) with minor allele frequency below 5%
and, subsequently, pruning related genotypes for Linkage Disequilibrium (LD)
using a window size of 50 kb and r2> 0.2, we finally retained 360,498 variants.

Simulated Data. We generated simulated data emulating real-world popula-
tions to evaluate whether ThreSPCA can correctly identify markers which con-
tribute to the genetic differences between and within the populations. Based
on previous work [4], we simulated two datasets varying m = {5000, 10000}
SNPs genotyped across n = {500, 1000} individuals based on the Pritchard-
Stephens-Donelly (PSD) model [25] with the mixing parameter between popula-
tions, α = 0.01. The allele frequencies were simulated based on real-world data
from three divergent populations, namely CEU (Utah residents with Northern
and Western European ancestry), ASW (African ancestry in Southwestern US),
and MXL (Mexican ancestry in California) from the HapMap Phase 3 data [17].
We selected a threshold t and varied it across the range t = {100, 250, 500}, rep-
resenting the number of SNPs which contribute to population structure between
the populations (true positives); the remaining m − t genotypes were simulated
such as they had minimal genetic differences between populations (false posi-
tives). We simulated 200 data sets (100 each for values of m and n) and applied
ThreSPCA, L-PCA and AL-PCA for comparative analyses to evaluate their efficacy.

2.3 Experiments

We performed QC on the 1KG data, including LD pruning using PLINK2.0 [9].
PCA was performed using TeraPCA [5]. Annotation of ThreSPCA derived vari-
ants were performed in Ensembl Variant Effect Predictor (VEP) [19]. We per-
formed Gene Ontology (GO) pathway analyses using clusterProfiler [27] in
R. We ran ThreSPCA, with the threshold parameter �, fixed to one.

3 Results

3.1 ThreSPCA Reveals Genetic Diversity Across the World

We applied ThreSPCA with a sparsity threshold of k = 500 on the 1KG data after
quality control and pruning for correlated SNPs. We obtained sets of informative
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markers of cardinality k from each of the PCs. We restricted our analysis to the
top three PCs, resulting in a total of 1,500 SNPs, which explained approximately
83% of the variance. Thus, we performed PCA on a reduced 1KG data with
2,503 individuals and 1,500 SNPs. We observed that both the PCA plot and the
allele frequency bar plot, grouped by populations across the world, are almost
identical. The squared Pearson correlation coefficient (r2) between the top two
PCs from the original 1KG data and ThreSPCA informed variants are very high,
equal to 0.98, 0.97 and 0.94 for PCs 1, 2 and 3 respectively. Thus, the PCA
plot of the informative markers clearly preserves the clusters of each subgroup
(Fig. 1) and reveals fine-scale population structure among the groups.

Fig. 1. Population structure of world populations from: A. pruned 1KG data with
360,498 SNPs, and B. 1KG data with 1,500 ThreSPCA derived variants corresponding
to the top three PCs, captured by (i) PCA plot and (ii) mean allele frequency bar plots
colored by continental populations arranged in order from Africa (AFR), Americas
(AMR), East Asia (EAS), Europe (EUR) and South Asia (SAS).

Examining each of the three PCs closely shows that the mean allele frequency
distribution (Appendix Figs. 5) from PC1 is skewed towards the African popula-
tions and also from the mixed ancestry populations of ASW (Africans in South-
western US) and ACB (African Caribbeans from Barbados). SNPs obtained from
PC2 were almost equally distributed across the continental populations with a
slightly higher frequencies in East Asians. PC3 shows a skewness towards South
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Asian populations. To make an informed choice of the sparsity threshold k, we
computed the PC scores from the top two PCs by projecting the sparse vectors
obtained from ThreSPCA on the original pruned 1KG data for a range of values
of k = {500, 1000, 5000}.

We computed r2 between the PC scores obtained from each PC for each value
of k and the original PC obtained from the pruned 1KG data. We observe high
correlation values for the top two PCs, cumulatively reaching their peak when
the sparsity parameter k is set to approximately 500 (Appendix Fig. 7 (left)).

3.2 Interpretability of ThreSPCA Informed Variants

Annotating the Selected Variants. To understand whether the variants derived
from ThreSPCA for each PC are functionally relevant and biologically inter-
pretable, we annotated them using VEP [19]. We also explored whether these
variants were mapping to a trait or disease in the GWAS catalog [6]. Most of the
variants were introns with some intergenic and small number of Transcription
Factor binding sites, upstream and downstream gene variants, etc. Interestingly,
among the coding consequences, 58 variants were missense and likely disease
causing and further statistics revealed that there are seven variants which are
deleterious and nine probably or possibly damaging variants (Fig. 2). We also per-
formed GO pathway analyses on ThreSPCA informed variants and found signifi-
cantly enriched pathways common to humans across the world, such as pathways
related to synapses and potassium, cation and ion channels, transporter com-
plex, among others (Appendix Fig. 6a). We found the calcium signaling pathway
from KEGG (Kyoto Encyclopedia of Genes and Genomes) to be significantly
enriched (Appendix Fig. 6b).

Mapping the Selected Variants to Traits. Mapping these variants in GWAS
catalog, we found that variants from PC1 mapped to skin pigment measure-
ment (Appendix Table 2), justifying our observation from the PCA plot and
mean allele frequency distribution. This is concordant with our observation
that ThreSPCA observed variants from PC1 were skewed towards populations of
African ancestry (Appendix Fig. 5), who are darker skinned than the rest of the
world. PC2 and PC3 on the other hand mapped to various traits which are com-
monly found to be varying in populations across the world such as body height,
BMI, hip and waist circumference, circadian rhythm, gut microbiome, smoking
status, cardiovascular diseases, calcium channel blocker use (concordant with
calcium signaling pathway found in GO analyses), blood measurements, among
others.

3.3 Comparing ThreSPCA to State-of-the-Art

Simulation Studies. We designed a simulation study to evaluate the correct-
ness of ThreSPCA and compare it with the state-of-the-art SPCA methods in
genetics, namely, L-PCA and AL-PCA from [16]. The population structure of the
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Fig. 2. Pie charts showing the percentage of variants from A. (i) most severe conse-
quences and (ii) coding consequences obtained from VEP. B. Deleterious and probably
damaging from (i) SIFT and (ii) PolyPhen.

(a) True positives (b) False positives

Fig. 3. Box and whisker plots comparing between ThreSPCA, L-PCA and AL-PCA for
true and false positives obtained from the simulated dataset of m = 10,000 and n =
1,000 and varying values of t, i.e., the number of SNPs which contribute to population
structure.

simulation shows three distinct clusters for each population with signs of admix-
ture between them (Appendix Fig. 4). Applying ThreSPCA on the simulated
dataset with 10,000 markers and 1,000 individuals, we observed that ThreSPCA
identified similar numbers (mean) of true positives, i.e., markers contributing to
the genetic diversity between and within the populations when compared to its
counterparts L-PCA and AL-PCA, while identifying a significantly smaller number
of false positives, i.e., noisy markers which have no difference in allele frequencies
between populations (Fig. 3b).



96 A. Chowdhury et al.

Table 1. Running time comparisons between ThreSPCA and other state-of-the-art
sparse PCA solvers. All times are in seconds except CWPCA, which is in hours.

k ThreSPCA AL-PCA CWPCA SPCA-Lowrank

150 117.3016 2287.224 3253.057

800 126.8674 2473.908 3152.857

1000 120.9341 2442.435 3121.234

1500 119.6183 2715.581 > 5hrs 3408.294

6000 123.2763 2440.104 3319.691

12000 126.3872 2451.353 3071.864

Real Data. We applied both ThreSPCA and AL-PCA3 on the 1KG data with
k = 500 and compared the PC1 scores vs. PC2 scores generated from the outputs
of the aforementioned methods. ThreSPCA and AL-PCA are almost identical to the
corresponding standard PC plot, clearly preserving the clusters of each subgroup.
We observed a near-linear relationship between the two SPCA algorithms for
both PCs with r2 = 0.9808 and 0.9426 for PC1 & PC2, respectively and with
varying k. This validates that ThreSPCA and AL-PCA are qualitatively very similar
to each other in inferring genetic structure.

Running Time. ThreSPCA clearly outperforms AL-PCA. In particular, for any
given k, while ThreSPCA takes less than two minutes in 1KG data, AL-PCA takes
about 15 minutes to do the same for a given penalty parameter λ > 0, since
it needs a full SVD. Moreover, as already mentioned in Sect. 1.2, λ is a hyper-
parameter which needs to be tuned with many cross-nested runs of the data in
order to achieve a desired sparsity value. In our case, for the sparsity parameter
set to 500, it took at least six runs for each PC. Therefore, the resulting speed-
up achieved by ThreSPCA is more than 45x for real data set and around 80x for
simulated data.

Finally, we also compare the output of our algorithm against other state-of-
the-art SPCA approaches, including the coordinate-wise optimization algorithm
of [3] (cwpca), and the spannogram-based algorithm of [22] (spca-lowrank). To
measure the accuracy of the of various SPCA algorithms, we first looked at the
term z�Az (for varying k), which is nothing but the total variability explained
(VE) by the sparse output z. In terms of VE, we noticed that ThreSPCA matches
that of the other state-of-the-art SPCA solvers for all the sparsity values observed,
which are much larger than that of AL-PCA (Appendix Fig. 7 (right)). In addi-
tion, we also found that ThreSPCA is not only among the most accurate algo-
rithms, but also is the fastest (Table 1) among all (takes about 100 s to 120 s
3 Results from L-PCA are qualitatively very similar to AL-PCA and we only report

results for the latter.
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to run for each k, while other solvers including AL-PCA run in time at least 2,200 s
for each k. See details in Appendix Sect. 1.B.3).

4 Discussion

We present ThreSPCA, a simple and intuitive approximation algorithm for SPCA,
based on a deterministic thresholding scheme, without imposing any restrictive
assumption on the input covariance matrix. ThreSPCA comes with a provable
accuracy guarantee and provides a clear sparsity vs. accuracy trade-off. In prac-
tice, it is much faster than the other state-of-the-art SPCA methods and indeed,
can be implemented in nearly input sparsity time.

Applying ThreSPCA on the 1KG data, we observed that the set of derived
SNPs accurately approximates the genetic diversity across world populations.
For each PC, the derived set of k SNPs (we used k = 500 throughout the
analyses) captured genetic structure within different continental populations.
Together, the top three PCs which explain most of the variance in the 1KG
data, we observed that ThreSPCA selected 1500 meaningful, ancestry information
preserving SNPs which leads to similar inference of population structure across
the world as the original 1KG data with 360,498 SNPs. Annotating ThreSPCA
derived variants further showed that they are interpretable and mostly missense
in nature, thus likely disease causing. To interpret this, we mapped these vari-
ants to various traits in GWAS catalog and found that indeed these variants were
mapped to different common traits such as body height, BMI, etc. which vary
within and between populations across the world, sometimes leading to spu-
rious associations due to population structure among populations [26]. These
variants also mapped to various diseases, which vary across populations such as
cardiovascular diseases. Although the scale of the data used in this analysis is
small when compared to large-scale genomic data, we observe that ThreSPCA is
designed to handle biobank-scale datasets since it only need to run a random-
ized SVD/PCA analysis, which can be implemented efficiently in out-of-core
settings [5]. ThreSPCA can also be used in GWAS as a population stratification
correction step by identifying informative markers which highlight the ancestry
stratification of cases/controls with fine-grained details which is often overlooked
by a standard PCA.

In summary, ThreSPCA provides a fast and provably accurate approximate
method for computing SPCA. It provides a method to find interpretable markers
in population genetics, which can immensely help understand population strat-
ification, a major cause of spurious associations in GWAS. Also, it highlights
the genetic sub-structure among different populations and the ThreSPCA derived
variants are likely disease causing, often mapped to potential diseases and traits.
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Appendix 1.A SPCA via Thresholding: Discussions
and Proofs

The intuition behind Theorem 1 is that we can decompose the value of the
optimal solution into the value contributed by the coordinates in R, the value
contributed by the coordinates outside of R, and a cross term. The first term
we can upper bound by the output of the algorithm, which maximizes with
respect to the coordinates in R. For the latter two terms, we can upper bound
the contribution due to the upper bound on the squared row norms of indices
outside of R and due to the largest singular value of U being at most the trace
of A.

We highlight that, as an intermediate step in the proof of Theorem 1, we need
to prove the following Lemma 1, which is very much at the heart of our proof
of Theorem 1 and, unlike prior work, allows us to provide provably accurate
bounds for the thresholding Algorithm 1. At a high level, the proof of Lemma 1
first decomposes a basis for the columns spanned by U into those spanned by
the top � singular vectors and the remaining n − � singular vectors. We then
lower bound the contribution of the top � singular vectors by upper bounding
the contribution of the remaining n − � singular vectors after noting that the
largest remaining singular value is at most a 1/�-fraction of the trace. We look
at the detailed proof of Lemma 1 below where we use the notation of Sect. 2.1.
For notational convenience, let σ1, . . . , σn be the diagonal entries of the matrix
Σ ∈ R

n×n, i.e., the singular values of A.

Lemma 1. Let A ∈ R
n×n be a PSD matrix and Σ ∈ R

n×n (respectively, Σ� ∈
R

�×�) be the diagonal matrix of all (respectively, top �) singular values and let
U ∈ R

n×n (respectively, U� ∈ R
n×�) be the matrix of all (respectively, top �)

singular vectors. Then, for all unit vectors x ∈ R
n,

∥
∥
∥Σ1/2

� U�
� x

∥
∥
∥
2

2
≥

∥
∥
∥Σ1/2U�x

∥
∥
∥
2

2
− εTr(A).

Proof. Let U�,⊥ ∈ R
n×(n−�) be a matrix whose columns form a basis for the

subspace perpendicular to the subspace spanned by the columns of U�. Similarly,
let Σ�,⊥ ∈ R

(n−�)×(n−�) be the diagonal matrix of the bottom n − � singular
values of A. Notice that U = [U� U�,⊥] and Σ = [Σ� 0; 0 Σ�,⊥]; thus,

UΣ1/2U� = U�Σ
1/2
� U�

� + U�,⊥Σ1/2
�,⊥U�

�,⊥.
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By the Pythagorean theorem,
∥
∥
∥UΣ1/2U�x

∥
∥
∥
2

2
=

∥
∥
∥U�Σ

1/2
� U�

� x
∥
∥
∥
2

2
+

∥
∥
∥U�,⊥Σ1/2

�,⊥U�
�,⊥x

∥
∥
∥
2

2
.

Using invariance properties of the vector two-norm and sub-multiplicativity, we
get

∥
∥
∥Σ1/2

� U�
� x

∥
∥
∥
2

2
≥

∥
∥
∥Σ1/2U�x

∥
∥
∥
2

2
−

∥
∥
∥Σ1/2

�,⊥
∥
∥
∥
2

2

∥
∥U�

�,⊥x
∥
∥2

2
.

We conclude the proof by noting that
∥
∥Σ1/2U�x

∥
∥2

2
= x�UΣU�x = x�Ax and

∥
∥
∥Σ1/2

�,⊥
∥
∥
∥
2

2
= σ�+1 ≤ 1

�

n∑

i=1

σi =
Tr(A)

�
.

The inequality above follows since σ1 ≥ σ2 ≥ . . . σ� ≥ σ�+1 ≥ . . . ≥ σn. We
conclude the proof by setting � = 1/ε.

Theorem 1. Let k be the sparsity parameter and ε ∈ (0, 1] be the accuracy
parameter. Then, the vector z ∈ R

n (the output of Algorithm 1) has sparsity
k/ε3, unit norm, and satisfies

z�Az ≥ Z∗ − 3εTr(A).

Proof. Let R = {i1, . . . , i|R|} be the set of indices of rows of U� (columns of
U�

� ) that have squared norm at least ε2/k and let R̄ be its complement. Here
|R| denotes the cardinality of the set R and R∪ R̄ = {1, . . . , n}. Let R ∈ R

n×|R|

be the sampling matrix that selects the columns of U� whose indices are in the
set R and let R⊥ ∈ R

n×(n−|R|) be the sampling matrix that selects the columns
of U� whose indices are in the set R̄. Thus, each column of R (respectively
R⊥) has a single non-zero entry, equal to one, corresponding to one of the |R|
(respectively |R̄|) selected columns. Formally, Rit,t = 1 for all t = 1, . . . , |R|,
while all other entries of R (respectively R⊥) are set to zero; R⊥ can be defined
analogously. The following properties are easy to prove: RR� + R⊥R�

⊥ = In;
R�R = I; R�

⊥R⊥ = I; R�
⊥R = 0. Recall that x∗ is the optimal solution to the

SPCA problem from Eq. (1). We proceed as follows:

∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
=

∥
∥
∥Σ1/2

� U�
� (RR� + R⊥R�

⊥)x∗
∥
∥
∥
2

2

≤
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

2
+

∥
∥
∥Σ1/2

� U�
� R⊥R�

⊥x∗
∥
∥
∥
2

2

+ 2
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

∥
∥
∥Σ1/2

� U�
� R⊥R�

⊥x∗
∥
∥
∥
2

≤
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2

2
+ σ1

∥
∥U�

� R⊥R�
⊥x∗∥∥2

2

+ 2σ1

∥
∥U�

� RR�x∗∥∥
2

∥
∥U�

� R⊥R�
⊥x∗∥∥

2
. (2)

The above inequalities follow from the Pythagorean theorem and sub-
multiplicativity. We now bound the second term in the right-hand side of the
above inequality.
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∥
∥U�

� R⊥R�
⊥x∗∥∥

2
= ‖

n∑

i=1

(U�
� R⊥)∗i(R�

⊥x∗)i‖2

≤
n∑

i=1

‖(U�
� R⊥)∗i‖2 · |(R�

⊥x∗)i| ≤
√

ε2

k

n∑

i=1

|(R�
⊥x∗)i|

≤
√

ε2

k
‖R�

⊥x∗‖1 ≤
√

ε

k

√
k = ε. (3)

In the above derivations we use standard properties of norms and the fact that
the columns of U�

� that have indices in the set R̄ have squared norm at most
ε2/k. The last inequality follows from ‖R�

⊥x∗‖1 ≤ ‖x∗‖1 ≤ √
k, since x∗ has at

most k non-zero entries and Euclidean norm at most one.
Recall that the vector y of Algorithm 1 maximizes ‖Σ1/2

� U�
� Rx‖2 over all

vectors x of appropriate dimensions (including Rx∗) and thus

‖Σ1/2
� U�

� Ry‖2 ≥
∥
∥
∥Σ1/2

� U�
� RR�x∗

∥
∥
∥
2
. (4)

Combining Eqs. (2), (3), and (4), we get that for sufficiently small ε,
∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
≤ ‖Σ1/2

� U�
� z‖22 + 2εTr(A). (5)

In the above we used z = Ry (as in Algorithm 1) and σ1 ≤ Tr(A). Notice that

U�Σ
1/2
� U�

� z + U�,⊥Σ1/2
�,⊥U�

�,⊥z = UΣ1/2U�z,

and using the Pythagorean theorem we get

‖U�Σ
1/2
� U�

� z‖22 + ‖U�,⊥Σ1/2
�,⊥U�

�,⊥z|22 = ‖UΣ1/2U�z‖22.
Using the unitary invariance of the two norm and dropping a non-negative term,
we get the bound

‖Σ1/2
� U�

� z‖22 ≤ ‖Σ1/2U�z‖22. (6)

Combining Eqs. (5) and (6), we conclude
∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
≤ ‖Σ1/2U�z‖22 + 2εTr(A). (7)

We now apply Lemma 1 to the optimal vector x∗ to get
∥
∥
∥Σ1/2U�x∗

∥
∥
∥
2

2
− εTr(A) ≤

∥
∥
∥Σ1/2

� U�
� x∗

∥
∥
∥
2

2
.

Combining with Eq. (7) we get

z�Az ≥ Z∗ − 3εTr(A).

In the above we used ‖Σ1/2U�z‖22 = z�Az and
∥
∥Σ1/2U�x∗∥∥2

2
= (x∗)�Ax∗ =

Z∗. The result then follows from rescaling ε.
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Appendix 1.B Additional Experiments

Fig. 4. PCA plot of the simulated data with three distinct populations simulated from
the PSD model with an α = 0.01, n = 1,000, m = 10,000 and t = 100

Appendix 1.B.1 Simulated Studies

The genotype matrix X ∈ R
m×n consisting of the simulated allele frequencies

was generated using the algorithms of [25]. More specifically, we set F = TS,
where T ∈ R

m×d and S ∈ R
d×n, where d ≤ n is the number of population

groups. S is the indicator matrix that encapsulates structure with n individuals
and contained in d populations. On the other hand, T characterizes how the
structure is manifested in the allele frequencies of each SNP. Finally, projecting
S onto the column space of T, we obtain the allele frequency matrix F. We
sample X as a special case of F for the Pritchard-Stephens-Donelly (PSD) model.
We simulate S using i.i.d draws from the Dirichlet distribution with varying
values of α, which denotes the parameter influencing the relatedness between
the individuals and is directly proportional to the admixture of populations.
Appendix Fig. 4 shows the population structure observed in this simulated data.

As it is difficult to establish notions of statistical significance in ThreSPCA
capturing the ancestry informative markers from the original data, we simulated
data sets with varying numbers of individuals (n) and SNPs (m) and allowed
t true SNPs that contribute to genetic ancestry. For the random markers that
do not contribute to the genetic differentiation, we sampled the Fst distances
between the individuals from a uniform distribution in the range {0, 0.005},
which indicates minimum difference in populations. Thus, with this step we
achieve the “true” markers contributing to genetic difference are the t SNPs and
the remaining m − t SNPs, we conclude, are noise.
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Appendix 1.B.2 Experiments on 1KG data

Population Structure Captured by PCA Plots. We filtered the original 1KG data
for the ThreSPCA derived k = 500 SNPs for each of the first three PCs and
in the PCA plots we observe the population structure and the allele frequency
distribution captured by each of the PCs. We clearly see that the SNPs from
PC1 loadings are most frequent in the African populations or mixed populations
of African ancestry (Appendix Fig. 5). The PC2 SNPs are most frequent in East
Asians, although commonly found in other populations as well and the third PC
SNPs are most frequent in South Asian populations (Appendix Fig. 5)). Thus,
the SNP loadings from the top three PCs accurately captures the population
structure across the world and merging them together, we not only capture
the entire population structure in the PCA plot but also discover fine-grain
substructure of populations (Fig. 1).

Fig. 5. Mean allele frequencies obtained from the first three PCs from ThreSPCA with
k = 500.

Tuning Input Sparsity k. We tried a range of k’s varying it from 50 to 1500 and
observed the r2 between the PCs derived from the original 1KG data and the
1500 SNPs derived from ThreSPCA. We observed that for the top two PCs the r2

is high from 0.96 to 0.99 wit the peak for both the PCs reaching around k = 500.
PC1 continues to increase by two decimal points before saturing at k = 1000.
Thus, we selected k = 500 for all the experiments as both the PCs reached their
respective peaks (Fig. 6).
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(a) Significant pathways from GO (b) Significant pathways from KEGG

Fig. 6. GO pathway analyses of the ThreSPCA informed variants, colored by p-values.

Fig. 7. Left: Line plot between the r2 between the PC scores of each PC obtained from
ThreSPCA and the original PC from 1KG data with varying values of sparsity, k. Right:
Variance explained by ThreSPCA, AL-PCA, and other state-of-the-art SPCA solvers for
varying k.

Appendix 1.B.3 Comparing ThreSPCA with the State-of-the-Art

Simulated Data. We observed that increasing the threshold of true positives
(markers that contribute to genetic structure) t led to an increase of the number
of true positives observed in ThreSPCA.

Real Data. For k = 500, on 1KG data we found perfect correlation with
ThreSPCA and AL-PCA for PC1 and PC2 with r2 = 0.97 and 0.94 respectively.
We also observed similar trends for k = 1000 and k = 1500 (squared correlations
larger than 0.9 for both PC1 and PC2).

Comparing the output of ThresPCA against other state-of-the-art SPCA
approaches, we compare the greedy coordinate-wise (GCW) method of cwpca
and set the low-rank parameter d of spca-lowrank to one. We performed these
evaluations on an Intel Xeon Gold 6126 processor running at 2.6 GHz with 96
GB of RAM and a 64-bit CentOS Linux 7 OS.
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Table 2. Traits and genes mapped in GWAS catalog from ThreSPCA informed variants.

PCs SNP CHR POS MAPPED
GENE

MAPPED TRAITS

PC1 rs35399673 5 104529307 RAB9BP1 skin pigmentation measurement
PC2 rs11556924 7 129663496 ZC3HC1 coronary artery disease, diastolic and systolic

blood pressure, myocardial infarction, platelet
count, parental longevity, testosterone
measurement, Agents acting on the
renin-angiotensin system use, Calcium channel
blocker use, hematocrit, hemoglobin count,
myeloid white cell count, body height, leukocyte
count, cardiovascular disease age at menarche

rs12525051 6 151913710 CCDC170 heel bone mineral density
rs1938679 11 69272096 MYEOV -

LINC02747
body height

rs196052 6 22057200 CASC15 Corneal astigmatism
rs2069235 22 39747780 SYNGR1 primary biliary cirrhosis rheumatoid arthritis
rs4714599 6 42285815 TRERF1 eosinophil percentage of granulocytes, neutrophil

percentage of granulocytes, eosinophil percentage
of leukocytes

rs5747035 22 17718606 ADA2 word list delayed recall measurement, memory
performance

rs7714191 5 131341541 ACSL6-AS1,
ACSL6

cortical surface area measurement

rs7901883 10 103186838 BTRC smoking behavior smoking status measurement
rs7976816 12 124315343 DNAH10 BMI-adjusted waist circumference waist

circumference
rs8002164 13 58248732 PCDH17 upper aerodigestive tract neoplasm
rs847888 12 112151742 ACAD10 diastolic blood pressure
rs907183 8 8729761 MFHAS1,

MFHAS1
Calcium channel blocker use measurement

PC3 rs10164546 2 106141004 FHL2 pursuit maintenance gain measurement
rs1020410 2 176784138 EXTL2P1 - LNPK physical activity
rs10896109 11 66080023 TMEM151A -

CD248
circadian rhythm

rs1264423 6 30571471 PPP1R10 mean corpuscular volume
rs12679528 8 15566164 TUSC3 body mass index
rs16942383 15 89405052 ACAN BMI-adjusted hip circumference
rs2988114 13 80870878 SPRY2 gut microbiome measurement
rs34672598 20 7884260 HAO1 QT interval
rs3828919 6 31466057 MICB platelet count
rs41492548 9 130607359 ENG monocyte count
rs4679760 3 155855418 KCNAB1 birth weight, parental genotype effect

measurement
rs744680 10 131741695 EBF3 visual perception measurement
rs76496105 2 110447667 BMS1P19 -

SRSF3P6
platelet count platelet crit
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